

Black Hole Grand Unification: Modelling and measuring SEDs from microquasars to quasars

M87 Credit: STScI/AURA and NASA/ESA Pieter van Oers

University of Southampton

Supervisors: Phil Uttley & Ian McHardy

University of Southampton

Co-Supervisors: Sera Markoff University of Amsterdam Universität Erlangen-Nuremberg

Credit: ESO

The Project

- Main purpose: Shed light on how Active Galactic Nuclei (AGN) evolve over time
- In particular, determine if states states found in X-ray Binaries (XRBs) map onto AGN states, accounting for:
 - Selection Effects
 Scaling Relations
- Find out if correcting for BH mass is enough to explain AGN behaviour, or are e.g. environment/ evolution/BH spin important?

Mass-Scaling?

Light years

	XRBs	AGN
Mass (M _{sol})	few	~10 ⁶ -10 ⁹
Geometry	AU/Pc	~I0 ⁶
Disc peak	X-ray	UV/Opt
Timescale	days/ months	millions of years

Microquasar HID

Hard State SED

Soft State SED

The AGN Zoo

	optical spectrum	radio loud
LINERs	narrow lines	no
Seyferts I Seyferts II	narrow/broad lines narrow lines	no
quasars	narrow/broad lines	~10%
BLAZARS (BL Lac) Radio Galaxies	flat spectrum/faint broad some narrow/broad	yes

AGN unification

Credit: Ron Kollgaard

AGN HID?

AGN SED?

<u>I. microquasar</u> <u>GRS1915+105</u>

Credit: X-ray (NASA/CXC/ Harvard/ J.Neilsen); Optical & IR (Palomar DSS2)

GRS1915+105 states

Belloni+ (2000) identified 12 classes using three basic states (A, B, C)

Class χ : The plateau state

GRS1915+105 and GX339-4 HID

Adapted from Belloni (2009)

Hard State SED

Need self-consistent model to explain broadband data: Markoff, Nowak, Wilms 2005

Jet model merits

Successfully explains XRB observations:

- GX339-4 (Markoff+. 2003, 2005; Maitra+ 2009)
- XTE J1118+480 (Maitra+ 2009)
- Cyg X-1 (Markoff+ 2005)
- GRO J1655-40 (Migliari+ 2007)
- A0620-00 (Gallo+ 2007)

and Supermassive BH observations:

- M81* (Markoff+ 2008)
- SGR A* (Markoff+ 2007)
- NGC 4258 (Yuan+ 2002, Reynolds, Nowak, Markoff+, in prep)

Fundamental Plane

(Merloni+ 2003; Falcke+ 2004)

Correlations found between

- Radio luminosity
- X-ray luminosity
- Black hole mass

(Markoff 2009)

Jet parameters and

(Markoff et al. 2005) Structure

jet luminosity

- magnetic dominance (U_B/U_e)
- jet base-radius (r0)
- electron temp.
- acceleration
 region distance (z)
- particle
 distribution index
 (pdi)

Additional modeling

- Smeared edge (Ebisawa 1991)
- Compton reflection from the disk (Magdziarz & Zdziarski 1995)

Literature Values

parameter	value	units	ref.
column dens.	4.7	10 ²² cm ⁻²	Chaty+ 1996
distance		kpc	Fender+ 1999
inclination	66	degrees	Fender+ 1999
mass	4	M _{sol}	Greiner+ 2001
donor temp.	4455	K	Alonso+ 1999

Fixed physical parameters used for fitting

Example result

Observations

1999 observation is much harder and is of lower X-ray luminosity then 2005

(PvO, SM+, 2010; Figure courtesy of T. Belloni)

1999/2005 observed SEDs

1999

(PvO, SM+ 2010)

Radio from GBI
IR from UKIRT

Statistically good fits obtained

definite trend discovered

plateau state vs. hard state

Similar to canonical HS

parameter	units	canonical	GRS1915+105
jet base radius	rg	3.5-20.2	20.4
electron temp	10 ⁹ K	20-52.3	9.2
pdi		2.1-2.9	2.3

Distinct from canonical HS

parameter	units	canonical	GRS1915+105	
U _B /U _e		1.1-7	692	
dist. to acc. region	10 ³ r _g	0.007-0.4	30	
jet luminosity	L_{Edd}	0.00034-0.07	0.48	

(Polko+, in press (Markoff+ 2008)

1999, fit 2

(PvO, SM+ 2010)

parameter	units	canonical	19991	1999 II
U _B /U _e		1.1-7	692	29
jet luminosity	L_{Edd}	0.00034-0.07	0.48	0.99
pdi		2.1-2.9	2.3	I.8

Conclusions

I 999 appears well-approximated by outflow model, but with extreme results

Plateau state is very extreme compared to the 'canonical' hard state => radiatively efficient track? (Coriat+ in prep.)

Radio vs. X-ray luminosity

(Coriat+, in prep.)

II. Constructing AGN SEDs

(Eracleous+ 2010)

Optical: SDSS DR7 Radio: >30 yrs of VLA

SDSS comprises spectroscopy of nearly 10⁶ galaxies, mainly located in northern hemisphere

Finding the AGN: BPT diagrams

 Baldwin, Phillips & Terlevich (1981) devise first (empirical) classification scheme, using optical line flux ratios, to remove starforming regions that also ionise those lines

Main lines OIII/H_β,
 NII/H_α, SII/H_α, OI/H_α

AGN classification

- Kewley+ 2001: first theoretical scheme, based on stellar synthesis, photo-ionization and shock models to get 'maximum starburst line'
- Kauffmann+ 2003: move extreme starburst line semi-empirically, fitting ~22,600 SDSS spectra(DRI)
- Kewley+ 2006: SDSS DR4; 567,486 galaxies, 85,224 galaxies

Kewley+ 2006 classification

Main lines OIII/H_β, NII/H_α, SII/H_α, OI/H_α with S/N > 3.0 and redshift 0.04<z<0.1</p>

Very conservative

Creating our sample

- Get BH mass from velocity dispersion using M-σ relation (Tremaine+ 2002)
- Want sample with restricted mass range but wide range in accretion rates to get SED templates as function of accretion rate
 - data mining: 8.5<Log[BH Mass]<9.0</pre>
 - proposals: 9.0<Log[BH Mass]<9.5</pre>

Matching SDSS DR7 with VLA observations

- ~10⁵ VLA observations and SDSS AGN
- Use only higher frequency VLA to isolate core emission (X/C band, 8/5 GHz)
- Sources may not be centre of FOV; these are likely targeted sources (remove centre 10% in area)

Matching SDSS DR7 with VLA, results

	X band obs	sources	n _{AGN} in mass range
AGN (Sy/LINERS)	1568	367	27
composites	2478	599	7
	C band obs	sources	n _{AGN} in mass range
AGN (Sy/LINERS)	6468	895	44
composites	12539	1614	21

Using Kauffmann 2003 classification

Mass range: 8.5<Log[BH Mass]<9.0</p>

Future work/next steps

 Reduce radio data with automated script (James Miller-Jones, Martin Bell)

0

BAND	Project
Optical	SDSS
Radio	eMerlin & eVLA
UV	SWIFT/GALEX
IR	SPITZER

Add multi-wavelength data:

Propose for high-quality data set: eVLA, eMERLIN?