Stochastic Acceleration in the Corona of Accreting Black Holes

"Black Hole Universe 2012"

June 18th-22nd 2012

Belmont R., Marcowith A., Cléaud A., Malzac J. (IRAP, Toulouse, and LUPM, Montpellier)

Acceleration in astrophysics

✓ Evidence for particle acceleration in astrophysics:

- ✓ High energy photons (HE, VHE sources)
- ✓ High energy particles: cosmic rays

Microphysics of acceleration/heating:

- ✓ Strong, steady, electric fields (pulsars)
- ✓ Eruptive, magnetic reconnection (solar corona, XRBs...)
- ✓ Steady shocks (SNRs), internal shocks (GRBs, AGN jets, XRB jets)
- ✓ Turbulent viscosity (MRI in accretion disks, ADAFs)
- ✓ Stochastic acceleration (Fermi 1949, Melrose 1980):
 - ✓ Solar corona (Miller, Roberts, Li, Steinacker, Schlickeiser, Dung, Petrosian...)
 - ✓ Galactic center (Liu&Petrosian 2006)
 - ✓ Blazars (Katarzinsky&Ghiselini 2006)
 - ✓ Intra-cluster medium (Blasi 2000, Petrosian 2001, Brunetti et al. 2004)
 - √γ-ray bursts (Waxman 1995, Dermer&Humi 2001)
 - ✓ Accreting black holes (Dermer&Miller 1996, Li&Kusunose 1996)

Outline

✓ Acceleration in XRBs

The physics of stochastic acceleration

✓ Numerical model

✓ Qualitative results: acceleration properties in the corona of accreting BH

Preliminary quantitative results: application to Cyg-X1

Acceleration in XRBs

✓ Low/hard state

- ✓ Thermal coronal
- Main scenario: heating by hot protons and turbulent viscosity (Ichimaru 1977, Narayan&Li 1995, +++)

✓ High/Soft state

- ✓ Non-thermal corona
- ✓ Main scenario: acceleration magnetic reconnection (Galeev et al. 1979)

Hybrid corona: Thermal + non-thermal

- Eqpair and co.: thermal heating + injection of power law electrons
- ✓ Variability <= accretion rate time evolution

✓ No idea what microphysics... Stochastic acceleration ?

Stochastic acceleration

(Fermi 1949, Melrose 1980)

✓ Turbulent medium

✓ MHD waves with a full range wavelengths and frequencies

Particle scattering off MHD waves

Scattering dominated by resonant wave-particle interactions

 \checkmark Averaged gain in energy => 2nd order Fermi acceleration process

Resonant interactions

Transverse, parallel-propagating modes: gyro-resonance

- ✓ Acceleration by the perpendicular electric field of circular polarized waves
- ✓ Resonant condition in the particle (GC) rest frame:
 - $\checkmark \omega(\mathbf{k}) = -\Omega_{c}$
 - \checkmark A particle is resonant with a wave of specific frequency
 - ✓ Electrons (protons) are resonant with R-waves (L-waves)
- ✓ Resonant condition in the lab frame: $\omega(k) kv_{\parallel} = -\frac{\Omega_c}{2}$
 - \checkmark A particle of momentum p is resonant with a wave of specific frequency $k_{res}(p)$
 - \checkmark For low-frequency waves, high energy particles: $k_{\rm res}r_L \approx 1$ i.e.: $k_{\rm res} \propto 1/p$
 - Electrons and protons can be resonant with both L&R waves
 - ✓ Interaction cross section (e.g. Schlickeiser 1989, Steinacker Miller 1992...): $\sigma(k,p)$

Consequences

- Energy transfer from waves to particles
- ✓ Wave spectrum:
 - ✓ If only one frequency: no efficient particle acceleration.
 - ✓ Need for a full wave spectrum (Kolmogorov, Kraichnan)

✓ Absorption coefficient:

 $\alpha_{\rm damp}(k) \propto 1/\tau_{\rm damp} \propto \int \sigma(k,p) f_{e/i}(p) dp$

 \checkmark Very sharp increase with wave frequency k

✓ Damping of the turbulent spectrum at k_{max} ✓ k_{max} decreases with particle energy (k ∝ 1/p)

The spectrum must be computed consistently from cascading and absorption

✓ Which species?

- ✓ Left mode absorbed by protons
- Competition of electrons and protons to absorb right modes

Particle Acceleration

(e.g. Dermer et al. 1997)

✓ Acceleration power:

$$\frac{dE}{dt} \propto \gamma / \tau_{\rm acc} \propto \int \sigma(k, p) W(k) dk$$

✓ Increase with particle energy

✓ At high energy:

✓ Acceleration: $dE/dt \propto p^{q-1} \propto p^{0.5-0.7}$

✓ Electron radiative cooling: $dE/dt \propto p^2$

✓ Amplitude and features depend on the Alfvén velocity: $v_A^2/c^2 = B^2/(4\pi n_p m_p c^2)$

✓ Magnetic field intensity

 \checkmark Proton density

✓ Maximal wave frequency $k_{max} =>$ energy threshold for particle acceleration: $p_{min} \propto 1/k_{max}$

Original Model

A kinetic code to model high energy plasmas (Belmont et al. 2008)
 Similar to Eqpair

✓ Homogeneous, isotropic medium (one-zone model)

✓ 3.5 interacting species: electrons, positrons, photons (+protons)

Microphysics:

- Photon-particle and particle-particle interactions
 - ✓ Compton scattering, self-absorbed bremsstrahlung and synchrotron radiation, pair prod./annih., Coulomb collisions
- \checkmark Injection of soft photons from the accretion disk

Particle thermal heating/non-thermal acceleration

Particle heating/ acceleration

Original Model

✓ Inputs:

✓ Optical depth: τ ✓ Magnetic field: $l_b = \frac{\sigma_T}{8\pi m_e c^2} RB^2$ ✓ Disk soft photons: kT_{in} and $l_s = \frac{\sigma_T}{m_e c^3} \frac{L_s}{R}$ ✓ Proton temperature: T_p ✓ Acceleration properties: l_{acc} (+++)

✓Outputs

- ✓ Lepton distribution
- ✓ Photon spectra
- ✓ Tables of spectra
 - ✓ Tables usable in the X-ray fitting library *Xspec*
 - ✓ Constraints on Cyg X-1 (Malzac et Belmont 2009)
 - ✓ Constraints on GX 339-4 (Droulans et al. 2010)

Model with stochastic acceleration

resonant

interaction

- ✓ Two more species and equations:
 - ✓ R-waves
 - ✓ L-waves

Accretion

Energy

 \checkmark One more term in the particle equation

cascade

✓ Additional parameters ✓ Power injected at large scale in each modes: l_{waves} ✓ Turbulent index q

Wave

Energy

An example

✓ Starting equilibrium with no acceleration

 $\checkmark \tau = 0.1, l_s = 0.1, l_b = 1, T_p = 1 \text{ MeV} (\beta = 0.2)$

✓ Thermal lepton distribution (heated by hot protons)

Thermal Comptonization spectrum (typical of low/hard states)

✓ Time evolution

✓ From t=0: energy injection $(l_{waves}=1)$ into large scale MHD waves

✓ Cascade time scale = $1/k^{q-1}$

Results: typical distributions

Typical Distributions

A 2-population lepton distribution
 Thermal, non-accelerated electrons
 Accelerated electrons
 Comptonization by accelerated electrons

Results: the proton switch

The Proton Switch

Plasma
$$\beta$$
 parameter for protons: $\beta = 0.1, 0.6, 1.0, 1.3, 4$

$$\beta = \frac{nk_BT_p}{B^2/8\pi} = \frac{U_{th}}{U_B}$$

For cold protons ($\beta < 1$):

- ✓ Right modes are absorbed by electrons
- ✓ Electrons are accelerated by waves
- Two electron populations

- ✓ For hot protons ($\beta > 1$):
 - \checkmark Right modes are absorbed by protons
 - ✓ Electrons are not accelerated
 - Electrons are heated by hot protons
 - ✓ One thermal electron distribution

The Proton Switch

✓ Very sharp transition:

Critical temperature:
$$T_* \approx 1 \ \tau^{-1} \left(\frac{B}{10^6 \text{G}}\right)^2 \left(\frac{R}{10^8 \text{cm}}\right) \text{ MeV}$$

✓ Computation of a large table of spectra

✓ 6 varying parameters (kT_{in}, l_s , β , τ , l_{waves} , l_b) => 500 000 spectra

✓ Used in Xspec as a table model

✓ Data: Beppo-Sax + CGRO (McConnell et al. 2002, courtesy: A. Zdziarsky)

✓ Low/hard state:

방법 동안에 가지 않는 것이 같은 것이 없다. 것이 같은 것이 없는 것이 없 않이 않이 않이 않이 않이 않이 않이 않 않이 않 않이 않이 않이 않이	
$n_H \ (10^{22} {\rm cm}^{-2})$	0.50
line (keV)	6.5
$\sigma~({ m keV})$	0.27
rel_refl	0.51
au	1.9
l_b	6.53
eta	0.98
$k_b T_{\rm in} ({\rm eV})$	300
l_s	0.23
l_s/l_{waves}	0.061
χ^2/dof	817/720

✓ High/soft state

$n_H (10^{22} \mathrm{cm}^{-2})$	0.63
line (keV)	5.2
$\sigma~({ m keV})$	1.6
rel_refl	0.89
au	0.046
l_b	0.19
eta	0.33
$k_b T_{\rm in} ({\rm eV})$	380
l_s	0.011
l_s/l_{waves}	0.20
χ^2/dof	231/236

Conclusion

✓ A general model for stochastic acceleration in astrophysical plasmas

✓ Consistent computation of the lepton distribution, wave spectrum and photon spectrum

✓ Application to the corona of accreting black holes:

- \checkmark Leptons can be accelerated to high energy
- ✓ Protons can switch on/off lepton acceleration depending in their temperature $(\beta=1)$

✓ The soft state of Cyg-X1 can be reproduced using such a model

✓ Next steps:

- ✓ Error computation and constraints (e.g. magnetic field)
- ✓ Look at other sources (blazars...)
- ✓ Self consistent computation of the proton distribution