Probing the Inner Accretion Disk in AGN Using X-ray Spectra

Laura Brenneman (Harvard-Smithsonian CfA) Black Hole Universe, Bamberg June 22, 2012

Probing the Inner Accretion Disk in AGN Using X-ray Spectra

<u>Collaborators</u>: Chris Reynolds, Martin Elvis, Andy Fabian, Guido Risaliti, Rubens Reis, Mike Nowak, Jon Miller

 One motivation for studying inner accretion flow: black hole spin

- Measuring spin: methods and caveats
- Spin measurements in AGN so far
- Implications for BH/host galaxy evolution
- Future prospects

The Importance of Black Hole Spin

 Provides rare means of probing strongfield gravity regime.

Indicator of recent gas accretion vs.
 merger history of supermassive BHs.

• Thought to drive jet production and outflows in all BHs, seeding the ISM/IGM with matter and energy.

How Can We Measure BH Spin?

- Thermal Continuum Fitting
 - X-ray Spectral (XRBs only: M, i, D must be accurately known)
- Inner Disk Reflection Modeling
 - X-ray Spectral (both XRBs and AGN)
- High Frequency Quasi-periodic Oscillations**
 - X-ray Timing (both XRBs and AGN)
- Polarization Degree & Angle vs. Energy**
 - X-ray Spectral, polarimetry (easier for XRBs)
- Imaging the Event Horizon Shadow**
 - smm-VLBI Imaging (AGN only: must be large, e.g., Sgr A*, M87)

How Can We Measure BH Spin?

- Thermal Continuum Fitting
 - X-ray Spectral (XRBs only: M, i, D must be accurately known)
- Inner Disk Reflection Modeling
 - X-ray Spectral (both XRBs and AGN)
- High Frequency Quasi-periodic Oscillations**
 - X-ray Timing (both XRBs and AGN)
- Polarization Degree & Angle vs. Energy**
 - X-ray Spectral, polarimetry (easier for XRBs)
- Imaging the Event Horizon Shadow**
 - smm-VLBI Imaging (AGN only: must be large, e.g., Sgr A*, M87)

The Innermost Stable Circular Orbit

- Maximally-spinning prograde BH (spinning in same direction as disk).
- ISCO at 1 GM/c².
- Frame-dragging rotationally supports orbits closer to BH before plunging.

- Non-spinning BH.
- Accretion disk still rotates!
- ISCO at 6 GM/ c^2 .
- No frame-dragging: orbits cease to spiral in and instead plunge toward BH inside ISCO.

- Maximally-spinning retrograde BH (spinning in opposite direction as disk).
- ISCO at 9 GM/c².
- Frame-dragging acts in opposition to disk angular momentum, causing orbits to plunge farther out.

GR Predicts Monotonic Relation for *a*, *r*_{isco}

Dauser, Wilms, Reynolds & Brenneman (2010)

Modeling the Reflection Spectrum

Fe Ka emission line from different disk annuli

KERRDISK or RELLINE model (Brenneman & Reynolds 2006; Dauser+ 2010)

Shape of Fe Kα emission line allows us to measure BH spin in systems of arbitrary mass: BHXRBs and AGN.

BH Spins in AGN

- Sample Size: ~30 SMBHs in bright, nearby AGN with broad Fe Kα lines (Miller+ 2007, Nandra+ 2007, de La Calle Perez+ 2010).
 - Out of 10¹¹⁻¹² estimated SMBHs in the accessible universe.
 - Must have high line EW, high X-ray s/n (≥200,000 photons from 2-10 keV, Guainazzi+ 2006), and line must be relativistically broad with r_{in} ≤ 9 r_g.

 Technique used: Inner Disk Reflection (e.g., broad Fe Kα): KERRCONV, RELCONV or KYCONV × REFLIONX or XILLVER
 Brenneman & Reynolds (2006) Dovčiak⁴ (2004) Garcia & Kallman (2010)

> Dauser+ (2010) <u>CAVEATS</u>: disk truncation radius disk ionization, density, Fe abundance disk irradiation profile complex absorption, soft excess

Assumption of ISCO Truncation

3-D MHD simulation of a geometrically-thin accretion disk.

Clearly shows transition at the ISCO which will lead to truncation in iron line emission.

Rapid drop in τ , rise in ξ within ISCO.

Reynolds & Fabian (2008)

Systematic Error from Emission ≤ISCO

Reynolds & Fabian (2008)

Spectral Complexity

Spectral components with continuum power-law modeled out

Spectral components with continuum power-law modeled out

Separating Reflection from Absorption

• Multi-epoch & time-resolved spectral analysis assesses variability of three spectral components: continuum, reflection, absorption.

• A physically consistent model should be able to explain ALL the data: spin, disk inclination, abundances shouldn't change.

• NuSTAR (June 2012) will also have high enough collecting area and low enough background >10 keV to differentiate between reflection and absorption (e.g., MCG—6: Miller, Turner & Reeves 2007 vs. Brenneman & Reynolds 2006).

• When used **simultaneously with XMM and/or Suzaku**, will achieve best-ever constraints on BH spin in terms of **accuracy** and **precision**.

Are Broad Fe K Lines Real??

• X-ray eclipses of the inner disk by BLR clouds cited in NGC 1365 (e.g., Risaliti+ 2011, Brenneman+, in prep.) can also differentiate between the reflection and absorption-only spectral modeling interpretations.

• Can verify the existence of relativistic emission features from the inner accretion disk by examining change in morphology of putative Fe K line as the eclipse progresses... *absorber-only model can't mimic such changes*.

 Must have Compton-thick eclipse producing a change in column density of factor ~10 to demonstrate such an effect.

• NGC 1365 subject of XMM/NuSTAR observing campaign (PI: Risaliti); theoretical modeling of light curves and spectra from inner disk during eclipses is also ongoing (PI: Brenneman).

What about the Soft Excess?

Iron Abundance in NGC 3783

Fit drives *a* > 0.88,
 Fe/solar = 2-4 (MCMC).

 Fe/solar = 1 worsens fit significantly, allows for low spin.

• Supersolar Fe consistent with measurements from BLR (e.g., Warner+ 2004, Nagao+ 2006).

• Caveat: Fe abundance and spin clearly correlated!

• More Fe \rightarrow stronger reflection \rightarrow more blurring required to fit data \rightarrow higher spin values.

 Illustrates importance of exploring wide range of modeling assumptions.

Reynolds, Brenneman+ (2012)

SMBH Spin Constraints from Reflection

AGN	EW (eV)	а	Log M _{BH}	L _{bol} /L _{Edd}	host
MCG—6-30-15 (Brenneman & Reynolds 2006; Miniutti+ 2007)	~400	≥0.98	6.19	0.42	SO
Fairall 9 (Schmoll+ 2009, Patrick+ 2011)	~130	0.65 ± 0.05	7.91	0.05	Sc
SWIFT J2127.4+5654 (Miniutti+ 2009)	~220	0.6 ± 0.2	7.18	0.18	??
1H 0707-495 (Fabian+ 2009; Zoghbi+ 2010)	~1200	≥0.98	6.70	~1.00	IrS
Mrk 79 (Gallo+ 2010)	~380	0.7 ± 0.1	7.72	0.05	SBb
NGC 3783 (Brenneman+ 2011)	~260	≥0.88	6.94	0.19	SB(r)a
Mrk 335 (Patrick+ 2011)	~145	0.70 ± 0.12	7.15	0.25	S0/a
NGC 7469 (Patrick+ 2011)	~90	0.69 ± 0.09	7.09	1.12	SAB(rs)bc
Ark 120 (Patrick+ 2011; Nardini+ 2011; Tu & Brenneman in prep.)	~120	0.94 ± 0.10	8.18	0.03	Sb/pec
3C 120 (Cowperthwaite & Reynolds 2012)	~50	≤-0.1	7.74	0.23	SO

N.B.: Patrick+ (2011) have published disparate spin constraints: NGC 3783 (a < -0.04) and MCG—6-30-15 (a ~ 0.44) based partly on different modeling of soft excess emission.

Black Hole Spin and Galaxy Evolution

- Mergers of galaxies (and, eventually, their SMBHs) result in a wide spread of spins of the resulting BHs.
- Mergers and chaotic accretion (i.e., random angles) result in low BH spins.
- Mergers and prolonged, prograde accretion result in high BH spins.

Black Hole Spin and Jet Production

 Blandford & Znajek (1977):
 rotating black hole + magnetic field from accretion disk = energetic jets of particles along the BH spin axis.

 Magnetic field lines thread disk, get twisted by differential rotation and frame-dragging.

 Results in a powerful outflow, though many specifics are still unknown, including how/why jets launch, dependence on spin, magnetic field, accretion rate.

 Some observational indication of spin correlation with jet power in microquasars... can we extend to AGN?

Powerful Jets = Retrograde Spin?

• Based on numerical simulations of Garofalo (2009), jet power is maximized for large, retrograde BH spins (though see Tchekhovskoy & McKinney 2012).

Present Suzaku and forthcoming XMM/NuSTAR/Swift campaign on 3C 120.

Summary

• **Reflection modeling** gives SMBH spin constraints now, though care must be taken in model fitting, assumptions.

• Wide range of measured spins for AGN, but so far all but one are consistent with $a \ge 0$, with average a = 0.6-0.7.

• Not yet a large enough sample size to probe role of accretion vs. mergers in SMBH/host growth.

• Preferential finding of high spins for RQAGN may be selection bias since they are bright, nearby sources.

• Larger sample size of AGN spins (esp. RLAGN) must be obtained with combination of time-resolved spectroscopy, multi-epoch spectroscopy and timing analysis with various instruments to begin understanding spin demographics.

Future Directions

NuSTAR (2012): higher E.A., lower background than Suzaku >10 keV

 with XMM/Suzaku/Astro-H, significant decrease on spin error
 differentiate between complex absorption, reflection in AGN

Astro-H (2014): higher E.A., better spectral resolution than Suzaku

 separate absorption from emission in Fe K band
 break degeneracy between truncated disk and lower spin(?)

- GEMS (2014): Most sensitive X-ray polarimeter flown

 independent check on spin, but likely only for XRBs

ASTROSAT (??): Simultaneous UV & X-ray spectroscopy

 tighter constraints on disk thermal emission, warm absorption

• ATHENA/EPE (??): Further large increase in E.A. over these missions

- probe accretion physics on orbital timescales - increase sample size by $\sim 10x$

Keep an Eye Out For...

- Results of Suzaku AGN spin survey (PI: Reynolds, lead Co-I: Brenneman)
 - NGC 3783 (Brenneman+ 2011, Reynolds+ 2012)
 - NGC 3516 (Trippe+, in prep.)
 - Fairall 9 (Lohfink+ 2012)
 - 3C 120 (Cowperthwaite+, in prep.)
 - Mrk 841 (forthcoming)

 Upcoming simultaneous NuSTAR/XMM AGN campaign (PI: Matt, lead Co-I: Brenneman)

- MCG—6-30-15
- Ark 120
- SWIFT J2127.4+5654
- 3C 120 (incl. Swift)

Upcoming simultaneous NuSTAR/Suzaku campaign (PI: Brenneman)

- NGC 4151
- 1C 4329A

Spectral Variability in MCG-6-30-15

• **Difference spectra** (high flux low flux) best fit by absorbed power-law <2 keV, <u>unabsorbed</u> **power-law >2 keV** in *XMM*, *Suzaku, Chandra* data.

• Best-fit model to all three has constant, three-zone warm absorber: $N_{\rm H} = 10^{20-23}$, $\xi = 0.03$ -6300, <u>no partial covering</u>. • Negative time-lag (~20 s) seen between hard and soft bands (soft trails hard), like 1H0707.

• Best modeled by reflection close to SMBH (<6 r_g), not extended reflector or PC clouds along l.o.s.

 Even if modeled by scattering from circumnuclear material, must be scattered within ~7 r_g. Expect relativistic reflection signatures in this range.

Spectral Variability in NGC 3783

• *Suzaku* difference spectra in NGC 3783 also well-modeled by absorbed power-law <2 keV, power-law only >2 keV.

 Once constant warm absorber is included for each time interval, difference spectra are fit very well <10 keV.

• Excess hard emission remains in intervals 4-5; best fit with model that allows for changing reflection fraction, inner disk ionization (ξ) as inner disk flux changes.

• Broadly consistent with light bending interpretation.