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Ultra-luminous X-ray sources (ULXs)

Non nuclear point-like X-ray sources with

Non-nuclear - no AGN
1000
L, > 10°° erg/s — over the Eddington limit
for ~10 M, objects
100
=
10

Several hundreds sources;
most luminous have L,>10*" erg/s

More common in late type galaxies

L, > 10°° erg/s

Grimm et al. 2003; see also Mineo et al. 2011
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(spirals, irregulars) than in early type galaxies (ellipticals, SO)



ULX models

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function
— same kind of objects (i.e. accreting BHs), only more massive?
- Intermediate-mass BHs — do they really exist? Are they so common?
- Stellar Black Holes - inconsistent with Eddington+maximum BH mass
ways around:
- non-isotropic emission (but “isotropic” nebulae have been detected)
- super-Eddington (how long? what Eddington ratio)

Supernovae - definitely there; but probably only ~10% of the ULXs&

Contamination (blended + background sources) — can be estimated
(explain most ULXs in E & S0s)

All have some merit; but none can explain the bulk of the ULX population



Role of metallicity — stellar BHs at Z~Z_

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function
— same kind of objects (i.e. accreting BHs), only more massive?
- Stellar Black Holes - inconsistent with Eddington + maximum BH mass

Massive stars reduce their mass through:

1) Mass-loss in stellar winds
2) Ejection in supernova explosions
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Role of metallicity — Massive stellar BHs at Z<<Z_ _

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function
— same kind of objects (i.e. accreting BHs), only more massive?
- Stellar Black Holes — inconsistent with Eddingtno + maximum BH mass

Metallicity can affect this conclusion ; wmsssn masshostars | veymsshosars |
1000 - g: #’é
1 o
stellar winds are stronger in high-Z stars zero metallicity i |
—~ mass loss depends on Z o il |
: - N
| | d
BHs can form through % P
direct collapse (no SN!) E? §
further reducing mass losses g | P E—
1 .
| B
- remnant mass depends on Z! g o ! g E
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Heger et al. 2002, 2003 : 3 10 10 '|t=m 200 1000

initial mass (=olar masses)



Role of metallicity — Massive stellar BHs at Z~0.01-0.3 Z_
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MSBHs and ULXs:

Eddington limit for 40 M, MSBHs is L, ~ 5x10%° erg/s
Mild anisotropies/super-Eddington can reach the XRLF break (~2x104° erg/s)

Need massive (> 10 M, , .) stellar companion to sustain accretion
(Roche-lobe overflow is required)

Observational tests :
1) Look at the metallicity around ULXs
2) Check whether ULXs are associated to star-forming regions

3) Compare N, , to model predictions
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Metallicity in ULX neighbourhoods

If ULXs are associated with MSBHSs, L, x<04Z .

Possible only for a handful of objects; NGC1313 X-2 has the best data and
appears to have 2~0.2 Z_

[ER et al., in prep.]
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Are ULXs in star-forming regions?

Observational answer:  close, but not inside: median distance

from ULX to closest SF region is ~100 pc
[Berghea PhD thesis]

If MSBHSs form through direct
collapse (no SN kick) this might be
a problem



Are ULXs in star-forming regions?

Observational answer:  close, but not inside: median distance from

ULX to closest SF region is ~100 pc
[Berghea PhD thesis]
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MSBHSs as a function of Z - predictions
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Literature sample

The model needs Z and SFR; results must be compared with the observed N,

Searched the literature for galaxies with
- X-ray data

- SFR (from Halpha, radio, IR/FIR, UV)
- metallicity (from emission line spectra)

Excluded E and S0Os because of high contamination from background sources

Sample of 63 galaxies with reasonably uniform (e.g., rescaled to the same
calibrations) measurements of Z, SFR, N,



Results — NULX vs. NBH
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Results — NULX vs. SFR

The model predicts a linear relation between SFR and N,

Power-law fit gives a slope consistent with 1
Normalization consistent with the

SFR-HMXBs relation
[e.g. Grimm, Gilfanov & Sunyaev 2003] 10

Dispersion is larger than in the
previous plot
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Results —- NULX/SFR vs. Z

We use N /SFR to remove the effects of the SFR

The predicted anti-correlation
appears to be there

However significance is low — 10 | o (1l T _
(~ 2 sigma) > : C e :
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Extend the sample — Extremely metal-deficient galaxies

The two most metal-poor galaxy known host 3 ULXs
(1inlZw 18, 2 in SBS0335+53) despite low (0.1-0.5 Msun/yr) SFRs
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22 eXtremely Metal Deficient galaxies (Z<0.05 Zsun)
observed by Chandra in 2010-2011 - Total (combined) SFRs >~ 0.5 Msun/yr

Got Ha oservations to complete the SFR coverage
How many ULXs?

No Z dependency - 1 ULX in the whole sample.
Z dependency | Zw 18-like — >3 ULXs



Extend/improve the sample — spiral and ring galaxies

Extend
Many galaxies have X-ray and SFR data, but lack Z measurements

Extending the sample with new observations by us [~20 objects] and better literature
search (~ 15 objects) [Still reducing/analyzing data :-( ]

Improve
Poissonian “noise” is inevitable

However, consistency is important: try to use the SAME metallicity estimator
and the SAME value for solar metallicity (!!!)

Additional problem for large galaxies: metallicity gradients. Try to use a
“representative” radius for ULXs

[ For example, in NGC 922 Z~0.7-1 Zsun at the centre,
but Z~0.2-0.3 Zsun on the ring (were ULXs are located!) ]



Conclusions

MSBHs appear to provide a viable explanation for the bulk of ULXs
However, more data are needed to test the model.
In particular, we wish to:

1) Enlarge the sample
eXtremely Metal-Deficient (XMDs) are very interesting, since they populate
the left part of the previous diagram
[I'm actually here to measure the SFR of a sample of XMDs]
Ring galaxies and LIRGs/ULIRGs are other interesting classes of galaxies

2) Use only galaxies with high-quality X-ray and SFR data (e.g. the 29
galaxies selected by Mineo et al. 2011)
[we are measuring the metallicities of several of them]
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