

1. ULXs & Metallicity - Theory

- 2. ULX & Metallicity Observational tests
 - 2.1 Metallicities in the neighbourhood of ULXs
 - 2.2 Association with star-forming regions
 - 2.3 $N_{\text{III} x}$ predictions
 - 2.4 Work in progress

Ultra-luminous X-ray sources (ULXs)

Non nuclear point-like X-ray sources with $L_{\chi} > 10^{39}$ erg/s

Non-nuclear → no AGN

 $L_X > 10^{39} \text{ erg/s} \rightarrow \text{over the Eddington limit}$ for ~10 M_{sun} objects

Several hundreds sources; most luminous have L_x>10⁴¹ erg/s

More common in late type galaxies (spirals, irregulars) than in early type galaxies (ellipticals, S0)

ULX models

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function

- → same kind of objects (i.e. accreting BHs), only more massive?
- Intermediate-mass BHs → do they really exist? Are they so common?
- Stellar Black Holes → inconsistent with Eddington+maximum BH mass ways around:
 - non-isotropic emission (but "isotropic" nebulae have been detected)
 - super-Eddington (how long? what Eddington ratio)

Supernovae → definitely there; but probably only ~10% of the ULXs&

Contamination (blended + background sources) → can be estimated (explain most ULXs in E & S0s)

All have some merit; but none can explain the bulk of the ULX population

Role of metallicity – stellar BHs at Z~Z_{sun}

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function

- → same kind of objects (i.e. accreting BHs), only more massive?
- Stellar Black Holes → inconsistent with Eddington + maximum BH mass

Role of metallicity – Massive stellar BHs at Z<<Z_{sun}

Extension of High Mass X-Ray Binaries (HMXBs) on the luminosity function

- → same kind of objects (i.e. accreting BHs), only more massive?
- Stellar Black Holes → inconsistent with Eddingtno + maximum BH mass

Metallicity can affect this conclusion

stellar winds are stronger in high-Z stars

→ mass loss depends on Z

BHs can form through direct collapse (no SN!) further reducing mass losses

→ remnant mass depends on Z!

Role of metallicity – Massive stellar BHs at Z~0.01-0.3 Z_{sun}

30-80 M_{sun} BHs (MSBHs) can form at Z <~ 0.3 Z_{sun}

1. ULXs and Metallicity - Theory

2. Observational tests

- 2.1 Metallicities in the neighbourhood of ULXs
- 2.2 Association with star-forming regions
- 2.3 N_{ULX} predictions
- 2.4 Work in progress

MSBHs and ULXs:

Eddington limit for 40 M_{sun} MSBHs is $L_{\chi} \sim 5 \times 10^{39}$ erg/s Mild anisotropies/super-Eddington can reach the XRLF break (~2x10⁴⁰ erg/s)

Need massive (> 10 M_{s u n}) stellar companion to sustain accretion (Roche-lobe overflow is required)

Observational tests:

- 1) Look at the metallicity around ULXs
- 2) Check whether ULXs are associated to star-forming regions
- 3) Compare N_{ULX} to model predictions

- 1. ULXs & Metallicity Theory
- 2. Observational tests

2.1 Metallicities in the neighbourhood of ULXs

- 2.2 Association with star-forming regions
- 2.3 N_{ULX} predictions
- 2.4 Work in progress

Metallicity in ULX neighbourhoods

If ULXs are associated with MSBHs, $Z_{ULX} < 0.4 Z_{sun}$

Possible only for a handful of objects; NGC1313 X-2 has the best data and appears to have Z~0.2 Z_{s un} [ER et al., in prep.]

Grise' et al. 2008

Mucciarelli et al. 2005, 2007

1. ULXs & Metallicity – Theory

2. Observational tests

2.1 Metallicities in the neighbourhood of ULXs

2.2 Association with star-forming regions

- 2.3 N_{HIX} predictions
- 2.4 Work in progress

Are ULXs in star-forming regions?

Observational answer: close, but not inside: median distance

from ULX to closest SF region is ~100 pc

[Berghea PhD thesis]

If MSBHs form through direct collapse (no SN kick) this might be a problem

Are ULXs in star-forming regions?

Observational answer: **close, but not inside**: median distance from

ULX to closest SF region is ~100 pc

[Berghea PhD thesis]

If MSBHs form through direct collapse (no SN kick) this might be a problem

However, dynamical kicks can do the trick and even more: expelled MSBH are in closer binaries than MSBHs in cluster

Blue (dashed): observations Black (empty): model, t=0 Red (filled): model, t=10 Myr

1. ULXs & Metallicity - Theory

2. Observational tests

- 2.1 Metallicities in the neighbourhood of ULXs
- 2.2 Association with star-forming regions
- 2.3 N_{III x} predictions
- 2.4 Work in progress

MSBHs as a function of Z - predictions

$$N_{\rm BH} = A \int_{m_{\rm prog}(Z)}^{m_{\rm max}} m^{-\alpha} \mathrm{d}m$$

$$A = \frac{\text{SFR}}{\int_{m_{\min}}^{m_{\max}} m^{1-\alpha} \, \mathrm{d}m}$$

 $\alpha \sim 2.35$ (e.g. Salpeter) $t_{co} = \text{lifetime of the (>10 M}_{sun})$ companions ~ 10 Myr

Mapelli, ER et al., 2010

Literature sample

The model needs Z and SFR; results must be compared with the observed N_{ULX}

Searched the literature for galaxies with

- X-ray data
- SFR (from Halpha, radio, IR/FIR, UV)
- metallicity (from emission line spectra)

Excluded E and S0s because of high contamination from background sources

Sample of 63 galaxies with reasonably uniform (e.g., rescaled to the same calibrations) measurements of Z, SFR, N_{ULX}

Results - NULX vs. NBH

Results - NULX vs. SFR

The model predicts a linear relation between SFR and N_{ULX}

Power-law fit gives a slope consistent with 1 Normalization consistent with the

SFR-HMXBs relation

[e.g. Grimm, Gilfanov & Sunyaev 2003]

Dispersion is larger than in the previous plot

Black (filled): Z<0.2 Z_{sun} galaxies

Red (empty): Z>0.2 Z_{sun} galaxies

Results – NULX/SFR vs. Z

We use N_{ULX}/SFR to remove the effects of the SFR

The predicted anti-correlation appears to be there

However significance is low (~ 2 sigma)

1. ULXs & Metallicity - Theory

2. Observational tests

- 2.1 Metallicities in the neighbourhood of ULXs
- 2.2 Association with star-forming regions
- 2.3 N_{III} predictions
- 2.4 Work in progress

Extend the sample – Extremely metal-deficient galaxies

The two most metal-poor galaxy known host 3 ULXs (1 in I Zw 18, 2 in SBS0335+53) despite low (0.1-0.5 Msun/yr) SFRs

22 eXtremely Metal Deficient galaxies (Z<0.05 Zsun)
observed by Chandra in 2010-2011 - Total (combined) SFRs >~ 0.5 Msun/yr

Got $H\alpha$ oservations to complete the SFR coverage

How many ULXs?

No Z dependency → 1 ULX in the whole sample.

Z dependency I Zw 18-like → >3 ULXs

Extend/improve the sample – spiral and ring galaxies

Extend

Many galaxies have X-ray and SFR data, but lack Z measurements

Extending the sample with new observations by us [~20 objects] and better literature search (~ 15 objects) [Still reducing/analyzing data :-(]

Improve

Poissonian "noise" is inevitable

However, consistency is important: try to use the SAME metallicity estimator and the SAME value for solar metallicity (!!!)

Additional problem for large galaxies: metallicity gradients. Try to use a "representative" radius for ULXs

[For example, in NGC 922 Z~0.7-1 Zsun at the centre, but Z~0.2-0.3 Zsun on the ring (were ULXs are located!)]

Conclusions

MSBHs appear to provide a viable explanation for the bulk of ULXs

However, more data are needed to test the model.

In particular, we wish to:

- Enlarge the sample
 eXtremely Metal-Deficient (XMDs) are very interesting, since they populate
 the left part of the previous diagram
 [I'm actually here to measure the SFR of a sample of XMDs]
 Ring galaxies and LIRGs/ULIRGs are other interesting classes of galaxies
- 2) Use only galaxies with high-quality X-ray and SFR data (e.g. the 29 galaxies selected by Mineo et al. 2011) [we are measuring the metallicities of several of them]