Fullēohte X-geleomode tungolas

Hrēodbēorht Soria

Curtin Institute of Radio Astronomy (ICRAR, Perth)

Dancung Doug Swartz, Manfred Pakull, Hua Feng, Tim Roberts Christian Motch, Luca Zampieri, Fabien Grise', Jess Broderick, Kinwah Wu, Mark Cropper, Kip Kuntz,....

Outline

- Introduction & definition
- Population properties
- X-ray spectral and timing properties
 A new physical class of black holes, or ordinary black holes in a new state?
- Optical/radio counterparts
- Black hole masses and formation processes Stellar/non stellar black holes? IMBHs?

1. Definition of ULX

Accreting, non-nuclear point-like sources (BHs) with apparent X-ray luminosities > 1E39 erg/s (alternatively: L > 3E39 erg/s)

X-ray luminosity of Galactic BHs <~ 1E39 erg/s X-ray luminosity of Galactic NSs <~ 3E38 erg/s (both are Eddington limited)

ULX = any source more luminous than Galactic BHs Or: ULX = any source more luminous than the Eddington limit of a 20 M_{sun} BH

Early detection of non-nuclear sources > 1E39 erg/s with *Einstein* (Long & van Speybtoeck 1983; Fabbiano & Trinchieri 1987)

Clearly identified with ROSAT + ASCA studies in the 1990s (Okada et al 1998 Colbert & Mushotzky 1999 Roberts & Warwick 2000 Colbert & Ptak 2002 Liu & Bregman 2005)

L_{0.3-10} ~ 3E40 erg/s

Hard power-law spectrum

At present, the most likely interpretation seems to be an ultra-powerful X-ray binary, with either a highly supereddington low-mass black hole or a very massive black hole. The hard powerlaw component derived from the ROSAT and ASCA spectral fits is known to be present in Galactic X-ray binaries (see Tanaka 1997 for a recent review); they have softexcesses added in their high-states. In case the accretion is not super-eddington, a rather high-mass black hole of ~100–200 M_{\odot} is inferred which may pose a challenge for stellar evolution models. (Komossa & Shulz 1998)

How can ULXs have apparent luminosities ~ 1E40 erg/s?

Four possible scenarios

Ordinary stellar-mass BHs (M <~ 20 M_{sun}) at very super-Eddington luminosity

Ordinary stellar-mass BHs (M <~ 20 M_{sun}) at about Eddington luminosity, **beamed** by ~ 10

Heavy stellar BHs (M ~ 30—80 M_{sun}) at about Eddington luminosity

Intermediate-mass BHs (M ~ 1000 M_{sun}) at sub-Eddington luminosity Eddington limit easy to exceed in theory (Begelman 2002), but not in nature?

62,000 quasars from the SDSS show L <~ 3 L_{Edd} (Steinhardt & Elvis 2010)

2. Population properties

Chandra & XMM-Newton allow statistical studies of X-ray binary populations in nearby galaxies down to $L_x \sim 1E36$ erg/s

32 years of X-ray imaging (1979—2011)

THE GREAT NEBULA IN ANDROMEDA M31

Einstein 1979

Chandra 2011

ULXs and X-ray binaries in nearby galaxies (Chandra and XMM-Newton)

Luminosity function of high-mass X-ray binaries N(>L) ~ SFR x L^{-0.6}

(Grimm, Gilfanov & Sunyaev 2003)

First Chandra catalogue of ULXs (Swartz et al 2004)

Hints of a break at L ~ 2E40 erg/s

New Chandra catalogue of ULXs (Swartz et al 2011)

Complete sample of 127 Northern-sky star-forming galaxies at d < 15 Mpc

XMM-Newton catalogue of ULXs (Walton et al 2011)

How common are ULXs?

~1 ULX per star formation rate ~ $0.5 M_{sun}/yr$

~1 ULX per galaxy, for E/Sph with dynamical mass ~ 10^{11} M_{sun}

~1 ULX per galaxy, for S/Irr galaxies with dyn. mass ~ 10^{10} M_{sun}

Low-mass disk galaxies and Irr are the most efficient ULX hosts per unit SFR (low metallicity, higher specific SFR)

3. X-ray spectral properties

Do ULX spectra have the same "states" as Galactic BHs? Are they mostly thermal (disk) or non-thermal (corona)?

"Canonical" BH accretion states

(From the 1980s... eg, Cyg X-1, GX339-4)

(Soria et al 2011)

"Canonical" BH accretion states

Power-law IC in inner region or base of outflow

Thermal Optically-thick emission from disk

Power-law

Full disk + jet + corona

Typical spectral "states" of ULXs ...but very few diskbb ULXs 0.3 10 5 1 E (keV)

M99 X1

Power-law spectrum Photon index $\Gamma = 1.6$ $L_x \sim 2 E 40 erg/s$

NGC 4631 X5 Softer power-law $\Gamma \sim 2.1$

L_x ~ 5E39 erg/s

ke<

S

normalized counts

data-model| × ΔX²

NGC 5575 X1 Hard power-law: $\Gamma = 1.5$ L_x ~ 7E40 erg/s

NGC1365 X1, X2 X1: $L_x = 3E40$ (in 2006) 5E39 (in 2007)

4E40 (in 2006) 1.5E39 (in 2007)

Where are the ULXs?

M83 X1: power-law ($\Gamma \sim 2.0$) + diskbb (kT_{in} ~ 0.3 keV)

Disk-blackbody component is very useful

$$L_{disk} \approx L_X \sim R_{in}^2 T_{in}^4 \sim M_{BH}^2 T_{in}^4$$

$$L_{disk} \approx L_X \sim \dot{m}$$
$$T_{in} \sim \dot{m}^{1/4}$$

Can be used to estimate BH mass and accretion ratebut only in certain conditions (L < L_{Edd} , $R_{in} \sim R_{ISCO}$)

Large, cool ULX disks as proof of intermediate-mass BHs? (J M Miller et al 2003; Miller, Fabian & Miller 2004)

Not true, if the disk does not extend to the ISCO

Energy (keV)

Examples of sources in the ultraluminous state (Gladstone et al 2009)

Direct disk emission and scattering regions

Thermal region (disk) $L_{disk} \ll 30\% L_X$ Comptonizing region $L_{po} \approx 70 - 100\% L_X$ $T \sim 2 - 3 \text{ keV}$

R_c ~ 5000 km T_{in} ~ 0.1—0.2 keV

16

20

25

Slim disk model may explain the hot inner region Radiation-MHD simulations by Ohsuga et al 2009, 2011

Abramowicz et al 1988 Watarai, Mizuno & Mineshige 2001

Provides outflows and moderate photon beaming

Supersoft ULXs do not fit this scenario

Blackbody spectra with kT ~ 0.1—0.2 keV Photospere size ~ 5000 km

Large photosphere of super-Edd outflows?

4. X-ray time variability

Sporadic ULX monitoring with *Chandra*, *XMM-Newton*, *Swift*

Unfortunately, RXTE is not suitable

Ho IX X1 (Kong et al 2010)

 $L_{v} \sim 1 - 3 \ 10^{40} \ erg/s$

Most ULXs vary by a factor of a few over months/years But very rarely in the off state (most *ROSAT* ULXs still on today)

Ho II X1 (Grise' et al 2010)

Count rate changes do not generally correspond to spectral state transitions (unlike Galactic BHs)

Spectral state transitions clearly seen in HLX1 (Farrell et al 2009, Servillat et al 2011). See Natalie Webb's talk

Hard band much more variable than soft band

Consistent with interpretation of Comptonized component + soft thermal disk

Supersoft ULXs have the strongest variability

Consistent with outflow scenario Inconsistent with standard disk around IMBH

M101 ULX (Mukai et al 2005)

Ho IX X1 (Dewangan et al 2006)?

M82 X2 (=X42.3+59) (Feng et al 2010)

M82 X1 (Strohmayer & Mushotzky 2003)

NGC6946 X1 (Rao et al 2010)

Frequency (Hz)

(may not be mass indicators)

Some ULXs have strong short-term variability, others do not even if they have similar luminosity and spectra

(Heil, Vaughan & Roberts 2009)

High rms = ULX with jets, low rms = no jets?

5. Optical counterparts, donor stars

Do ULXs accrete from a low-mass or a high-mass donor? (compare LMXBs and HMXBs)

Characteristic age, relation with star formation?

Majority of ULXs found near B stars (age ~ 10-30 Myr)

Most likely counterparts tend to be blue stars (eg B0 type)

-6

-5

-4

-3

-2

-1

Ś

Sample of ULX counterparts with HST imaging (Tao et al 2011)

...but are we seeing the true colours of the donor star, or a strongly irradiated donor star, or an irradiated disk?

Transient ULX in M83 provides a clue (Soria et al 2011)

Chandra 2011

Ctp may be irradiated disk, at least for M83 X1

(Soria et al 2011)

If the optical ctp is an irradiated disk, we may see emission lines

We may be able to measure their orbital velocity shifts

We may constrain the BH mass function

NGC 1313 X1: several papers by Grise', Pakull & Motch

ULXs often surrounded by large ionized nebulae: ULX bubbles (Pakull 2002)

See David Cseh's talk

Characteristic diameter ~ 100—300 pc Characteristic energy up to ~ 1E52 erg

Some are X-ray photoionized, others shock-ionized Some have synchrotron radio nebulae, others do not

Holmberg IX X1

Pakull & Mirioni 2002 Grise' et al 2008

No radio nebula (F <~ 0.1 mJy) $L_x \sim 1$ —2 E 40 erg/s $L_{mech} \sim 1$ E 40 erg/s

IC342 X1 ("Foot Nebula")

Pakull & Mirioni 2002 Feng & Kaaret 2008

Radio nebula (Cseh et al 2010) F ~ 2 mJy, E ~ 1 E 51 erg

 $L_x \sim 1 E 40 \text{ erg/s}$ $L_{\text{mech}} \sim \text{few E 39 erg/s}$

NGC1313 X2

Grise' et al 2008

No radio nebula (F <~ 0.1 mJy)

 $L_x \sim 0.5$ —2 E 40 erg/s $L_{mech} \sim few E 39 erg/s$

ULX bubbles suggest:

Strong winds (favours near or super-Edd models over IMBHs) Quasi-isotropic X-ray ionization (rules out strong beaming)

Large bubbles without a ULX are (almost) never seen (suggests that ULXs are continuously active)

Expansion speed ~ 100—200 km/s, age ~ a few E5 to 1E6 yr

Mass transfer rate <~ 1E(-5) M_{sun}/yr

More consistent with moderately efficient accretion onto a massive stellar BH, $M \sim 30-100 M_{sun}$

(SS433 is similar but younger and with higher mass transfer rate)

Do ULX bubbles also contain jets? (like SS433)

9 GHz contours and H α greyscale image

S26 may be a mechanically-dominated BH at super-Edd mdot Shows that collimated jets can exist in the super-Edd regime Jet power ~ a few 10⁴⁰ erg/s ~ 10 times SS433

6. BH formation channels

- Ordinary stellar-mass BHs: easy
 - Massive stellar BHs (M ~ 30—80 M_{sun}): possible, rare....require special conditions
- Intermediate-mass BHs: Pop-III remnants? nuclei of accreted satellite dwarfs? coalescence of stellar BHs in old globular clusters? coalescence of O stars in young massive clusters? recoiling (small) nuclear BHs?

BHs with masses up to 80 M_{sun} can be formed at very low (but not primordial) metallicity (Belczynski et al 2010)

Stars with initial masses ~ 150—300 M_{sun} do exist (eg, in 30 Doradus, LMC) (Crowther et al 2010)

BH mass still very uncertain

Almost all ULXs can be formed with BH masses up to 80 M_{sun}, accretion rates <~ 10 Eddington, Luminosity ~ L_{Edd} x (1+ In mdot) <~ 3 L_{Edd}, Beaming by a factor of <~ 3

Very few (2?) may be true IMBHs

Outflows, slim disk or scattering corona at small radii (near ISCO) Standard (irradiated) disk at large radii

State transitions are different from Galactic BHs Why is the high/soft state so rare?

Mechanical power often similar to radiative power
L _{0.3-10}	Γ +s	oft x?	curved	HS state
2-10 E 40			(curved)	diskbb?
2 E 40	1.2 +/- 0.1			
2-3 E 40	1.3-1.5	Y		
2.7 E 40	2.0 +/- 0.3			
2 E 40			comp / sd	
4-6 E 39	1.6-1.8			
1.7 E 40			comp / sd	
3 E 40	1.9	Y		
2 E 40			comp / sd	
1 E 40	1.6-1.8	Y		
2 E 40	2.5 +/- 0.2	Y		
3 E 40	2.4 +/- 0.1	Y		
1-3 E 40	1.7-1.9	Υ	sd?	
4-6 E 39	2.0-2.5	Υ		
2 E 40	2.5 +/- 0.1	Y		
7 E 39	2.3 +/- 0.1	Y		
1.5 E 40	1.8-2.1	Y		
1 E 40	1.8-2.1	Y		
1.5 E 40	0.9 +/- 0.1			
1.3 E 40	<mark>(~1)</mark>		broken po	
1 E 40	1.8 +/- 0.1	Y	(comp)	
0.7-1 E 40	2.6-2.7	Y	(comp)	
	-0.3-10 2-10 E 40 2 E 40 2-3 E 40 2-3 E 40 2 E 40 4-6 E 39 1.7 E 40 3 E 40 2 E 40 1 E 40 2 E 40 1 E 40 3 E 40 1-3 E 40 4-6 E 39 2 E 40 1-3 E 40 1-3 E 40 1.5 E 40 1 E 40 1.5	$-0.3-10$ Γ + s2-10 E 402 E 402-3 E 402-3 E 402-3 E 404-6 E 394-6 E 391.7 E 403 E 401 E 401 E 401.6-1.82 E 401 E 401.6-1.82 E 402 E 401 E 401.6-1.82 E 402 E 402 E 401.5 E 402.5 +/- 0.23 E 402.5 +/- 0.11.3 E 401.5 E 401.5 E 401.5 E 400.9 +/- 0.11.3 E 401.6 +1.82.11.5 E 401.8 +/- 0.11.7 E 401.8 +/- 0.11.7 E 401.8 +/- 0.1	$L_{0.3-10}$ Γ + soft x?2-10 E 402 E 402-3 E 402-3 E 402-7 E 402.7 E 402.0 +/- 0.32 E 404-6 E 391.6-1.81.7 E 403 E 401 E 401.6-1.8Y2 E 401 E 401.6-1.8Y2 E 401 E 401.6-1.8Y2 E 402 E 402.5 +/- 0.2Y3 E 402.5 +/- 0.1Y1-3 E 401.7-1.9Y4-6 E 392.0-2.5Y2 E 402.5 +/- 0.1Y1.5 E 401.8-2.1Y1.5 E 400.9 +/- 0.11.3 E 40(~1)1 E 401.8 +/- 0.1Y0.7-1 E 402.6-2.7Y	$L_{0,3-10}$ Γ + soft x?curved2-10 E 401.2 +/- 0.1(curved)2 E 401.3 - 1.5 Y2.7 E 40 $2.0 +/- 0.3$ 2 E 40 $2.0 +/- 0.3$ $comp / sd$ 4-6 E 391.6 - 1.8 $comp / sd$ 1.7 E 40 $comp / sd$ $comp / sd$ 3 E 401.9 Y $comp / sd$ 2 E 40 $comp / sd$ 1.7 E 40 $comp / sd$ 3 E 401.9 Y2 E 40 $comp / sd$ 3 E 40 $2.5 +/- 0.2$ Y3 E 40 $2.5 +/- 0.2$ Y3 E 40 $2.4 +/- 0.1$ Y1-3 E 40 $1.7 - 1.9$ Ysd? $sd?$ 4-6 E 39 $2.0 - 2.5$ Y2 E 40 $2.5 +/- 0.1$ Y7 E 39 $2.3 +/- 0.1$ Y1.5 E 40 $1.8 - 2.1$ Y1.5 E 40 $0.9 +/- 0.1$ 1.3 E 40 (-1) broken po1 E 40 $1.8 +/- 0.1$ Y $(comp)$ $0.7 - 1 E 40$ $2.6 - 2.7$ Y

ULX	L _{0.3-10}	Γ + soft x?	curved	HS state
NGC5775 X1	7 E 40	1.7 +/- 0.2		
	1 E 40	1.9 +/- 0.2		
NGC5775 X2	1 E 40	1.5 +/- 0.1		
NGC1365 X1	3 E 40	1.8 +/- 0.1		
	1 E 40	1.8 +/- 0.1 Y	(curved)	
	5 E 39	1.8 +/- 0.2 Y		
NGC1365 X2	4 E 40	1.2 +/- 0.1		
	1.5 E 39	1.2 +/- 0.2		
M99	2 E 40	1.6 +/- 0.1		
NGC4579	1.5 E 40	1.9 +/- 0.1		
Antennae X11	0.7-2 E 40	1.3-1.8		
Antennae X16	0.7-2 E 40	1.1-1.4		
Antennae X42	1 E 40	1.7 +/- 0.1		
Antennae X35	3 E 40	2.5 +/- 0.5		
Antennae X44	1-1.5 E 40	1.6-2.0		
Antennae X?	1 E 40	1.2 +/- 0.1		
NGC5204	0.7-0.9 E 40	2.1-2.4 Y	comp	
NGC7714	7 E 40	2.1 +/- 0.2		
	4 E 40	(2.6 +/- 0.5) Y	comp	
Cartwheel N10	4-12 E 40	1.9 +/- 0.2	curved	
Arp240	7 E 40	1.5 +/- 0.5		