Broad iron K α feature in Cygnus X-1 spectra with XMM-Newton

Refiz Duro

Thomas Dauser¹, Jörn Wilms¹, Katja Pottschmidt⁵, Michael A. Nowak⁶, Sonja Fritz^{1,2}, Eckhard Kendziorra², Marcus G. F. Kirsch³, Christopher S. Reynolds⁷, Rüdiger Staubert² ¹ ECAP, ² IAAT, ³ ESA-ESOC, ⁴ ESO, ⁵ CRESST/UMBC/NASA-CSFC, ⁶ MIT, ⁷ UOD

ECAP Dr.Karl-Remeis Sternwarte Bamberg, Germany

July 18, 2011

Winchester, UK

Our data show:

Cygnus X-1 is a highly rotating black hole!

Bright sources with XMM-Newton's EPIC-pn

Observing modes:

- Burst mode
- Timing mode

Main obstacles:

- Burst mode low S/N
- Telemetry limit of ${\sim}100$ mCrab

Terrer free Agent 🖬

Photo, ESA/XMM-Newton

Solution: Modified Timing Mode

Modification:

- increase telemetry to EPIC-pn
- increase lower energy threshold limit (introduces soft excess)

Wilms+ 2005

Improvement:

- Timing Mode spectrum
- Modified Timing Mode spectrum

Absorbed power law (Fritz 2009)

Lightcurves - simultaneous data for Cygnus X-1

Iron line feature

Energy [keV]

Iron line feature

Energy [keV]

Iron line feature - gainshift

Iron line feature - gainshift

Model

$Const \star gabs \star (cutoffpl + diskbb + gauss + (relconv \otimes reflionx))$

Parameter	ϵ frozen	ϵ free
$\Gamma_{\rm pl}$	1.670 ± 0.018	$1.663^{+0.019}_{-0.017}$
$E_{\rm fold}$ [keV]	290^{+70}_{-50}	290^{+80}_{-50}
$E_{\text{Fexxv K}\alpha}$ [keV]	6.646	6.646
$E_{\text{Fexxvi K}\alpha}$ [keV]	6.955	6.955
$\xi [\text{erg cm s}^{-1}]$	1400^{+300}_{-200}	1700^{+300}_{-400}
$\rm Fe/Fe_{\odot}$	$1.7^{+0.5}_{-0.4}$	$1.6^{+0.5}_{-0.4}$
a	$0.88^{+0.07}_{-0.11}$	-0.1 ± 0.4
i[deg]	32 ± 2	36^{+2}_{-4}
ϵ	3	10^{+0}_{-6}
$s_{\rm gainshift}$	$1.0240^{+0.0019}_{-0.0018}$	$1.0230^{+0.0019}_{-0.0017}$
$\chi^2/{ m dof}$	261/238	254/237
χ^2_{red}	1.10	1.08

Dauser+ 2010 Hanke+ 2010

Model

$Const \star gabs \star (cutoffpl + diskbb + gauss + (relconv \otimes reflionx))$

Parameter	ϵ frozen	ϵ free
$\Gamma_{\rm pl}$	1.670 ± 0.018	$1.663^{+0.019}_{-0.017}$
$E_{\rm fold}$ [keV]	290^{+70}_{-50}	290^{+80}_{-50}
$E_{\text{Fexxv K}\alpha}$ [keV]	6.646	6.646
$E_{\text{Fexxvi K}\alpha}$ [keV]	6.955	6.955
$\xi [\text{erg cm s}^{-1}]$	1400^{+300}_{-200}	1700^{+300}_{-400}
$\rm Fe/Fe_{\odot}$	$1.7^{+0.5}_{-0.4}$	$1.6^{+0.5}_{-0.4}$
a	$0.88^{+0.07}_{-0.11}$	-0.1 ± 0.4
i[deg]	32 ± 2	36^{+2}_{-4}
ϵ	3	10^{+0}_{-6}
$s_{\rm gainshift}$	$1.0240^{+0.0019}_{-0.0018}$	$1.0230^{+0.0019}_{-0.0017}$
$\chi^2/{\sf dof}$	261/238	254/237
χ^2_{red}	1.10	1.08

Dauser+ 2010 Hanke+ 2010

Broad iron K α feature in Cygnus X-1 spectra

Summary

- Modified Timing Mode provides possibility to observe bright sources with high ${\sf S}/{\sf N}$
- Simultaneous observations with XMM-Newton & RXTE
- Broad iron 6.4 keV $K\alpha$ line feature
- Gainshift of $\sim\,2\%$ to EPIC-pn data
- Rel. convolved reflection describes the data best

Summary

- Modified Timing Mode provides possibility to observe bright sources with high ${\sf S}/{\sf N}$
- Simultaneous observations with XMM-Newton & RXTE
- Broad iron 6.4 keV $K\alpha$ line feature
- Gainshift of $\sim 2\%$ to EPIC-pn data
- Rel. convolved reflection describes the data best

Cygnus X-1 has high spin ~ 0.9

Duro+ 2011

Summary

- Modified Timing Mode provides possibility to observe bright sources with high ${\sf S}/{\sf N}$
- Simultaneous observations with XMM-Newton & RXTE
- Broad iron 6.4 keV $K\alpha$ line feature
- Gainshift of $\sim~2\%$ to EPIC-pn data
- Rel. convolved reflection describes the data best

Cygnus X-1 has high spin ~ 0.9

Duro+ 2011

Gou+ 2011

See poster by Thomas Dauser on: Modeling Relativistic Reflection: Lamp Post vs. Coronal Geometry

There is no more

(Modified) Timing Mode of XMM-Newton's EPIC-pn

Obstacles:

- Low S/N if observed in Burst Mode
- Telemetry limit of ${\sim}100$ mCrab in Timing Mode

Solution:

- 2 EPIC-MOS instruments switched off
- Increased lower energy threshold limit to 2.8 keV

Kendziorra+ 2004

(Modified) Timing Mode of XMM-Newton's EPIC-pn

Obstacles:

- Low S/N if observed in Burst Mode
- Telemetry limit of ${\sim}100$ mCrab in Timing Mode

Solution:

- 2 EPIC-MOS instruments switched off
- Increased lower energy threshold limit to 2.8 keV

Kendziorra+ 2004

New rmf:

- split events soften the spectra
- simulate MTM by using Timing Mode observations

Observing bright objects with XMM-Newton

Obstacles:

- Low S/N if observed in Burst Mode
- Telemetry limit of ${\sim}100$ mCrab in Timing Mode

Solution:

- 2 EPIC-MOS instruments switched off
- Increased lower energy threshold limit to 2.8 keV

Kendziorra+ 2004

New rmf:

- split events soften the spectra
- simulate MTM by using Timing Mode observations

Object	a	Method/Model	Reference	
Cygnus X-1	0.05	Reflection & Continuum	Miller et al., 2009	
4U 1543-475	0.3	Reflection & Continuum	Miller et al., 2009	
GRO J1655-40	0.87	Reflection & Continuum	Miller et al., 2009	
XTE J1652-453	0.5	Iron line	Hiemstra et al.,2010	
GX 339-4	0.1-0.5	Continuum	Kolehmainen et al., 2011	
GX 339-4	≤ 0.9	Iron line	Kolehmainen et al., 2011	
GX 339-4	0.935	Iron line	Miller et al., 2004	

XMM-Newton & RXTE

Simultaneous data show relatively stable flux. Broadened iron line: Doppler & relativistic effects.

Method

Model:

$Const \star gabs \star (cutoffpl + diskbb + gauss + (relconv \otimes reflionx))$

Parameter	Value	8
$\Gamma_{\rm pl}$	1.67 ± 0.02	
norm _{pl}	$1.22^{+0.09}_{-0.07}$	7 4
$E_{\rm fold} [\rm keV]$	$(3.1^{+1.4}_{-0.6}) \times 10^2$	
$E_{\rm abs1} [\rm keV]$	$6.65_{-0.00}^{+0.10}$	
$ au_1$	$(0.3^{+0.3}_{-0.2}) \times 10^{-2}$	
$\xi [\mathrm{erg}\mathrm{cm}\mathrm{s}^{-1}]$	$(1.4 \pm 0.2) \times 10^3$	500 b b b b b b b b b b b b b b b b b b
$\mathrm{Fe}_{\mathrm{solar}}$	1.6 ± 0.5	200
a	$0.89^{+0.08}_{-0.11}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
θ [deg]	33 ± 2	
$slope_{gainshift}$	$1.0234^{+0.0020}_{-0.0019}$	
stat/dof	272/243	
$\chi^2_{\rm red}$	1.12	
		0.9

Cygnus X-1:

- rotating with high spin $a \approx 0.9$
- relativistically broadened iron line
- convolved reflection model

- inclination angle θ Ninkov et al., 1987
- folding energy Wilms et al., 2006
- parameters indicative of intermediate state