GR Black Hole MHD Simulations of Accretion

Dr. P. Chris Fragile College of Charleston, SC

Collaborators:

Peter Anninos (LLNL), Jay Salmonson (LLNL), Omer Blaes (UCSB), David Meier (JPL), Sera Markoff (Amsterdam), Chris Done (Durham), Jason Dexter (Washington)

> Students: Anna Gillespie, Marco Rodriguez, Julia Wilson, Shikha Chaurasia

Solid Theoretical Foundation

- Shakura & Sunyaev (1973)/ Novikov & Thorne (1973)
 - thin-disk model
 - thermal spectrum
 - nearly Keplerian profile
 - disk truncates at the ISCO
 - very small radial infall velocity
 - source of angular momentum transport unspecified

$$t_{\phi R} = \alpha P$$

Fig. 1. Two regimes of matter capture by a collapsar: a) a normal companion fills up its Roche lobe, and the outflow goes, in the main, through the inner lagrangian point; b) the companion's size is much less than Roche lobe the outflow is connected with a stellar wind. The matter loses part of its kinetic energy in the shock wave and thereafter, gravitational capture of accreting matter becomes possible

Solid Theoretical Foundation

- "Polish doughnut"
 - "thick-disk" or "fluid torus"
 - Paczyński, Abramowicz et al. (1978)
 - Disk fills equipotential surfaces
 - Cusp in equipotential due to relativity
 - Unlike Shakura-Sunyaev disk,
 - no angular momentum transport
 - "disk" may penetrate inside ISCO
 - non-Keplerian
 - radial pressure gradients

Pioneering numerical work

8

7

6

4

3

2

10g(N)

NUMERICAL STUDY OF FLUID FLOW IN A KERR SPACE*

JAMES R. WILSON Lawrence Radiation Laboratory, University of California, Livermore Received 1971 July 12; revised 1971 November 12

James R. Wilson 1922-2007

A NUMERICAL STUDY OF NONSPHERICAL BLACK HOLE ACCRETION. I. EQUATIONS AND TEST PROBLEMS

ര

JOHN F. HAWLEY AND LARRY L. SMARR¹ Department of Astronomy, University of Illinois

AND

JAMES R. WILSON Lawrence Livermore National Laboratory Received 1983 April 22; accepted 1983 June 20

Rebirth of numerical work

A NUMERICAL STUDY OF NONSPHERICAL BLACK HOLE ACCRETION. I. EQUATIONS AND TEST PROBLEMS

JOHN F. HAWLEY AND LARRY L. SMARR¹ Department of Astronomy, University of Illinois

AND

JAMES R. WILSON Lawrence Livermore National Laboratory Received 1983 April 22; accepted 1983 June 20

First example of numerical simulations testing theoretical predictions

Real Provide Angular momentum transport

- Papaloizou & Pringle (1984)
 - linear global stability analysis of differentially rotating torus
 - neutrally stable to axisymmetric perturbations
 - unstable to low-order non-axisymmetric modes (PPI)
 - modes grow on dynamical timescale
 - could play a role in angular momentum transport

1980s.

Angular momentum transport

- Hawley et al. (1987, 1991, 2002)
 - numerical simulations of non-linear growth and saturation of PPI
 - PPI suppressed in
 - "wide" tori or
 - when tori connect to hole via accretion

- Igumenshchev & Beloborodov (1997)
 - mass accretion due to cusp overflow

- Balbus & Hawley (1991, 1998)
 - previously discovered by Velikhov and Chandrasekhar
 - provided field is weak, only requires

- modes grow on dynamical timescale
- probably plays a dominant role in angular momentum transport in all ionized astrophysical disks

Shearing box simulations of MRI

• Unstratisfied

http://jila.colorado.edu/~jasi1566/Unstratified_Shearing_Box_Movie.html

Shearing box simulations of MRI

• Stratisfied

http://jila.colorado.edu/~jasi1566/Stratified_Shearing_Box_Movie.html

Birth of 3D GR MHD simulations

- De Villiers, Hawley & Krolik (2003)
 - start from analytic torus
 - seed with weak magnetic field
 - evolves into something resembling thin, Keplerian disk due to action of MRI

Explosion of numerical work

GR

- Nelson, Papaloizou, … 1999→
- Stone, Proga, Turner, ... 2001→
- Armitage, Reynolds, Miller, O'Neill, Sorathia, ... $2001 \rightarrow \int Newtonian$
- Hawley, Krolik, DeVilliers, Beckwith, Simon, ... 2003→
- Rezzolla, Font, Zanotti, ... 2003→
- Gammie, McKinney, Noble, Moscibrodzka, ... 2004→
- Fragile, Anninos, Salmonson, ... 2005→
- Ohsuga, Matsumoto, Machida, ... 2005→
- Narayan, Shafee, Tchekhovskoy, Penna, ... 2006→
- Varniere, Tagger, ... 2008→
- plus many groups doing shearing box simulations (started in 1990's)
- plus many groups doing simulations of accretion in other contexts (proto-planetary disks, neutron stars, etc.)

Numerical "experiments"

Numerical "experiments"

- Simulations of tilted disks
 - Fragile et al. (2007, 2009)

http://fragilep.people.cofc.edu/research/movies/torus3d.m.915h_rho.mov

Standing shocks in tilted disks

(Fragile & Blaes 2008)

Epicyclic motion in tilted disks

Fragile & Blaes (2008)

Inner radius of tilted disks

• Surface density

Inner radius of tilted disks

• Surface density

Determining spin of a black hole

Inner radius of tilted disks

Disk precession

- Torque of BH causes disk to precess
 - After initial twisting phase, disk precesses as solid body

http://fragilep.people.cofc.edu/research/movies/torus3d.m.915m_rho.mov

Matching simulations w/ observations

- "After-the-fact" radiative cooling models
 - Schnittman et al. (2006)
 - Noble et al. (2007);
 Mościbrodzka et al. (2009)
 - Dexter et al. (2009, 2010)
 - Dexter & Fragile (2011)

Matching simulations w/ observations

- "After-the-fact" radiative cooling models
 - Schnittman et al. (2006)
 - Noble et al. (2007);
 Mościbrodzka et al. (2009)
 - Dexter et al. (2009, 2010)
 - Dexter & Fragile (2011)

Matching simulations w/ observations

Thermodynamics of simulated disks

- Geometrically thin (soft state) disks
 - Shafee et al., 2008 & Penna et al., 2010
 - Noble et al., 2009 & 2010
 - cooling ≈ heating (everywhere, locally)
 - matches assumption of Shakura & Sunyaev (1973) and Novikov & Thorne (1973)

- Geometrically thick (hard state) disks
 - Fragile & Meier, 2009
 - physical cooling model based on bremsstrahlung, synchrotron & inverse Compton

- 1970's Jim Wilson was "the man"
- 1980's Hydrodynamics
- 1990's MHD/Relativistic Hydrodynamics
- 2000's General Relativistic MHD
- 2010's GR Radiation MHD

Radiation MHD in shearing box

Turner et al (2003); Turner (2004)
Hirose et al. (2006, 2009)

- Bondi-Hoyle accretion onto black hole
 - Zanotti et al. (2011)

Optical depth

Radiative flux

MHD Simulations Pop Quiz

- What are some of the many uses of MHD simulations of accretion?
 - A) testing analytic theory
 - B) studying non-linear evolution
 - C) "experimenting" with novel scenarios
 - D) interpreting observations
 - E) All of the above

MHD Simulations Acknowledgements

- Thank you to
 - the LOC and SOC
 - NSF
 - ORAU/ORNL
 - SCSGC & SC EPSCoR

COLLEGE of CHARLESTON FOUNDED 1770

SPACE GRANT