Accretion

Andrew King

Theoretical Astrophysics Group, University of Leicester, UK

accretion = release of gravitational energy from infalling matter

energy released as electromagnetic (or other) radiation but accreting matter always has (specific) angular momentum

 $j \sim (GMR_0)^{1/2}$

where M is gravitating mass at radius R_0 from accretor

so even if destabilized it hangs up centrifugally at some radius

$$R_{\rm circ} \sim \left(\frac{j^2}{GM_{\rm accretor}}\right)^{1/2} \sim fR_0 >> R_{\rm accretor}$$

e.g in a close binary, $R_{\rm circ} \sim$ binary separation feeding AGN: infalling matter has $R_{\rm circ} >> R_s$ (SMBH)

must lose angular momentum in order to accrete

SO

- 1. spherical (Bondi) accretion is never a good approximation
- 2. accretion is *always* from a disc:

energy losses via dissipation are always faster than a.m. losses, and orbit of lowest energy for fixed angular momentum is a circle

matter spirals in through a sequence of circular orbits.

this is an *accretion disc* – thickness *H* is smaller than radius *R*

accretion discs are universal

condition for a thin disc ($H \le R$)

insert it agair

disc is almost hydrostatic in z-direction, so pen the file again. If the red x still appears, you may have to delete the image and the

$$\frac{1}{\rho}\frac{\partial P}{\partial z} = \frac{\partial}{\partial z} \left(\frac{GM}{(R^2 + z^2)^{1/2}}\right)$$

but if the disc is thin, $z \ll R$, so this is

$$\frac{1}{\rho}\frac{\partial P}{\partial z} = -\frac{GMz}{R^3}$$

with $\partial P/\partial z \sim P/H$, $z \sim H$ and $P \sim \rho c_s^2$, where c_s is sound speed, we find

$$H \sim c_s \left(\frac{R}{GM}\right)^{1/2} \sim \frac{c_s}{v_K} R$$

hence thin disc requires Kepler velocity to be highly supersonic

since $c_s \propto T^{1/2}$, this requires that the disc can cool.

if this holds we can also show that

the azimuthal velocity is close to Kepler

so for discs,

thin \iff Keplerian \iff efficiently cooled

either all three of these properties hold, or none do!

need some means of removing angular momentum: *viscosity*

early parametrization $v \sim \lambda u$ with typical length and velocity scales λ, u . Now argue that

$$\lambda < H, u < c_s$$

first relation obvious, second because supersonic random motions would shock. Thus set

$$v = \alpha c_s H$$

and argue that $\alpha < 1$, *but* no reason to suppose $\alpha = const$

`alpha—prescription' useful because disc structure only depends on low powers of α - but *no predictive power* surface density of disc changes diffusively on viscous timescale

$$t_{\rm visc} = \frac{R^2}{\nu} = \left(\frac{R}{H}\right)^2 \frac{1}{\alpha\Omega}$$

AGN disc: $H/R \sim 10^{-3}$, $\Omega(R) = (GM/R^3)^{1/2}$, so

$$t_{\rm visc} \sim 5 \times 10^{10} R_{\rm pc}^{3/2} M_8^{-1/2} {
m yr!}$$

$$(R_{\rm pc} = R/({\rm pc}), \ M_8 = M/10^8 M_{\odot})$$

-- gas feeding AGN must have tiny a.m. *before* forming a disc

physical angular momentum transport

a disc has

$$\frac{\partial}{\partial R}(R^2\Omega) > 0, \quad \text{but} \quad \frac{\partial\Omega}{\partial R} < 0$$

accretion requires a mechanism to transport a.m. outwards, but first relation \rightarrow *stability* against axisymmetric perturbations (Rayleigh criterion).

most potential mechanisms sensitive to a.m. gradient, so transport a.m. *inwards*!

need a mechanism sensitive to Ω or v_K

Balbus—Hawley (magnetorotational, MRI) instability

vertical fieldline perturbed outwards, rotates faster than surroundings, so centrifugal force > gravity $\rightarrow kink$ increases. line connects fast-moving (inner) matter with slower (outer) matter, and speeds latter up: *outward a.m. transport*

Jets

one observed form of outflow: jets with ~ escape velocity from point of ejection, ~ c for black holes

launching and collimation not understood – but Lorentz factors $\gamma >> 1$ probably require toroidal magnetic field, since

disc must choose choose to put a lot of energy into little matter

jets generally come from deepest part of potential – near accretor,

so jet direction is orthogonal to plane of inner disc

this does not need to be the same as the BH spin direction: alignment takes time!

disc may have two states:

- 1. infall energy goes into radiation (standard)
- 2. infall energy goes into winding up internal disc field thus

occasionally all fields line up \rightarrow matter swept inwards, strengthens field \rightarrow energy all goes into field \rightarrow jet ???

(e.g. King, Pringle, West, Livio, 2004)

jets seen (at times) in almost all accreting systems: AGN, LMXBs etc

accretion produces radiation: radiation makes pressure – can this inhibit further accretion?

radiation pressure acts on electrons; but electrons and ions (protons) cannot separate because of Coulomb force: radiation pressure force on an electron is

$$F_{\rm rad} = \frac{L\sigma_T}{4\pi cr^2}$$

$$F_{\rm grav} = \frac{GMm_p}{r^2} \qquad (m_e \ll m_p)$$

thus accretion is inhibited once $F_{\rm rad} > F_{\rm grav}$, i.e. once

$$L > L_{\rm Edd} = \frac{4\pi GMc}{\kappa} = 1.3 \times 10^{38} \frac{M}{M_{\odot}} \,\,{\rm erg\,s^{-1}}$$

 $(\kappa \simeq \sigma_T/m_p = \text{opacity} \gtrsim \text{electron scattering})$

so what happens if accretor is fed at rates

$$\dot{M} > \dot{M}_{\rm Edd} = L_{\rm Edd} / \eta c^2$$
 ?

(Shakura & Sunyaev, 1973)

local Eddington limit requires $\dot{M}(R) = \dot{M}_{Edd} \frac{R}{R_{sph}}$, where

 $R_{\rm sph} \sim (\dot{M}/\dot{M}_{\rm Edd})R_s, R_s =$ Schwarzschild radius – most matter expelled here

side-on jets

off-axis viewer sees outflow, side-on jets: SS433

(cf Begelman, King & Pringle, 2006)

on-axis viewer sees intense beamed radiation

ultraluminous X—ray source = ULX

don't need exotic objects (e.g. intermediate-mass black holes) to make *most* ULXs, but just $\dot{M} >> \dot{M}_{Edd}$

this happens naturally in various stages of binary evolution

e.g. ~ every high-mass XRB probably becomes a ULX (like SS433) similarly, most ultracompact binaries start as ULXs

ULXs don't have to be black holes, just super-Eddington!

correlation $L_{\rm obs} \propto T^{-4}$ is observed for blackbody component of many ULXs (Kajava & Poutanen, 2009)

suggests beaming goes as

 $b \propto r^{-2} \propto \dot{M}^{-2}$

(recall that $R_{\rm sph} \propto M R_s$)

ULX luminosity is

$$L_{\rm obs} = \frac{L_E}{b} [1 + \ln(\dot{M}/\dot{M}_E)]$$

where b is beaming factor, set by inflow geometry.

consider intrinsic blackbody emission from source near BH,

luminosity
$$L_{bb} = lL_E$$
, size $R = rR_s \propto rM$

find $L_{bb} \propto R^2 T^4 \propto r^2 M^2 T^4 \propto L_{bb}^2 T^4 \frac{r^2}{l^2}$

so
$$L_{\rm obs} = \frac{1}{b} L_{bb} \propto T^{-4} \frac{l^2}{r^2 b}$$

physically reasonable, as central structure is always Eddington but physical scale of funnel area goes as $r^2\propto\dot{M}^2$, cf `Polish doughnuts'

Figure 1. Beaming factor b (dashed curve) and accretor mass M_1 (solid curve, in M_{\odot}) as functions of the Eddington ratio \dot{m} for ULXs. Here L_{40} is the inferred isotropic bolometric luminosity in units of 10^{40} erg s⁻¹ and $x \sim 1$ a dimensionless quantity given by equation (7)

(King, 2009)

are there supermassive analogues of ULXs?

how super—Eddington can an AGN BH be?

in virial equilibrium, mass inside radius R obeys $GM/R \propto \sigma^2$

with σ = velocity dispersion of host galaxy

hence a gas mass $M \sim f_g \sigma^2 R/G$ can fall in, on a timescale

 $t \sim R/\sigma$, so maximum accretion rate is

$$\dot{M}_{\rm dyn} \sim \frac{f_g \sigma^3}{G}$$

compare with Eddington accretion rate $\dot{M}_{\rm Edd} \sim \frac{4\pi GM}{\kappa \eta c}$

→ Eddington ratio

$$r_{\rm Edd} = \frac{\dot{M}_{\rm dyn}}{\dot{M}_{\rm Edd}} = \frac{f_g \sigma^3 \kappa \eta c}{4\pi G^2 M} = \frac{\eta c}{4\sigma} \simeq 50 \frac{\eta_{0.1}}{M_8^{1/4}},$$

using M—sigma relation $M \simeq \frac{f_g \kappa}{\pi G^2} \sigma^4$

hence AGN have only modest Eddington ratios:

leads to M – sigma relation (King 2003, 2005)

as quasispherical outflow shuts off accretion on to SMBH

can AGN ever be more super—Eddington than this?

for a star, the
$$\dot{M} \sim \frac{\sigma^3}{G}$$
 argument produces $\dot{M} \sim \frac{M_2}{P}$

where P is the period of the circular orbit when star fills Roche lobe this obeys $M = 0.11 P_{\rm hr} M_{\odot}$, with $P_{\rm hr} =$ period in hours this suggests $\dot{M} \sim 10^4 M_{\odot} {\rm yr}^{-1}$

but this is deceptive!

in practice stars do not have circular orbits near a supermassive black hole, but are scattered in on near—parabolic orbits and disrupted at pericentre R = a

half of star unbound from SMBH – bound half has a range of return times

$$T \sim \frac{2\pi G M_{\rm bh}}{E^{3/2}}$$

where E is - orbital energy: this has a spread

$$E \sim \frac{GM_{\rm bh}}{a^2} R_2$$

but tidal lobe filling at pericentre requires

$$\frac{R_2}{a} \sim \left(\frac{M_2}{M_{\rm bh}}\right)^{1/3}$$

so spread in T is
$$\sim P\left(\frac{M_{\rm bh}}{M_2}\right)^{1/2} \sim 10^4 P$$

hence in practice we get only $\dot{M} \sim 1 M_{\odot} \text{ yr}^{-1}$

which is just Eddington for $M_{\rm bh} = 10^8 M_{\odot}$

tidal disruption requires $M \lesssim \text{few} \times 10^6 M_{\odot}$ since otherwise star does not fill Roche lobe before accreting to SMBH

narrow parameter space for super—Eddington tidal disruption: is Sw 1644+57 (Bloom et al., 2011) this kind of event? distance >> previous events: suggests *beaming* of HE emission – like ULX? Summary

- accretion is always via a disc Bondi is never a good approximation
- thin $\leftarrow \rightarrow$ Keplerian $\leftarrow \rightarrow$ disc cools: theory incomplete (viscosity!)
- AGN disc: $t_{\rm visc} > t_{\rm H}$ unless $R < 1 \ {\rm pc}$
- jets orthogonal to inner disc plane, not necessarily parallel to BH spin
- ULX beaming goes as $b \propto r^{-2}$
- most ULXs are super-Eddington phase of close stellar-mass binaries
- ULX quasispherical winds → nebulae
- AGN analogues of ULXs rare: tidal disruptions like Sw 1644+57

this leads to determinate equation for observed luminosity

$$L_{\rm obs} = 2.2 \times 10^{36} m_1 \dot{m}^2 (1 + \ln \dot{m}) \,\,{\rm erg}\,{\rm s}^{-1}$$

with
$$m_1 = M_1 / M_{\odot}, \dot{m} = M / M_E$$

so accretor mass required to explain observed luminosity $L_{\rm obs} = 10^{40} L_{40} \text{ erg s}^{-1}$

is

$$\frac{m_1}{L_{40}} = \frac{4500}{\dot{m}^2(1+\ln\dot{m})}$$

so can explain most ULXs with stellar-mass binaries and modest Eddington factors (hence beaming)

not all ULXs must be black holes!

since
$$\dot{M} = \dot{m}\dot{M}_E \propto L_E\dot{m} \propto (M_1/\eta c^2)\dot{m}$$

where η is the efficiency (about 0.1 for both neutron stars and black holes, larger Eddington factor \dot{m} can compensate for smaller accretor mass, even with lower absolute accretion rate

thus a $10M_{\odot}$ black hole with $\dot{m} = 15$ produces same apparent luminosity as a $1.4M_{\odot}$ neutron star with $\dot{m} = 30$

neutron star has lower accretion rate (stronger beaming) white dwarf ULXs also possible (supersoft)

beaming – luminosity correlation now predicts luminosity function

nearest ULXs are at ~ 0.7 Mpc, with luminosities ~ few times

 $10^{39} - 10^{40} \,\mathrm{erg}\,\mathrm{s}^{-1}$

agrees with observed LF (Mainieri et al., 2010)

NB ULXs in ellipticals *must be transient* (GRS 1915+105-like) since all HMXBs have disappeared since star formation

in spirals both types of ULXs can coexist

pseudoblazars?

a ULX with the same Eddington factor as SS433 $(\dot{m} \sim 3000 - 10^4)$

would appear extremely bright — nearest would be at > 660 Mpc, with apparent luminosity

$$L > 10^{45} \, \mathrm{erg \, s^{-1}}$$

-- right distance and luminosity for an AGN, but

not centred on host galaxy – e.g. PKS 1413 + 135?

Summary

- stellar—mass binary can survive super—Eddington mass transfer by ejecting excess
- viewed off—axis these systems are like SS433, or X—ray transients
- viewed on—axis these are ULXs (`SS433-like, GRS1915+105-like')
- no need for exotic explanations (e.g. IMBH) neutron star or even white—dwarf ULXs are possible
- beaming probably goes as $b \propto \dot{m}^{-2}$ (Eddington factor) LF agrees
- pseudoblazars possible
- no bright AGN analogues of ULXs