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Outline

What do we know about warm absorbers?
What is theirimportance?

A glance at the future



Absorbing gas (Warm Absorbers)

Absorption by ionized gas in our line of sight is seen in ~50%
of AGN

Most of the gas is seen outflowing (100-1000 km/s)

In general there is no clear connection between emission by
the BLR or NLR and WA

- Different opening angle of the gas
- Different location

The WA does not have a precise location in the classical
unified model.



IONIZED (WARM) ABSORPTION







Where is the WA located ? (e.g. Behar +03 Guainazzi&Bianchi os)
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Where is the WA located ? (e.g. Proga 2000...present)
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.. Disk instabilities?



Where is the WA located ? (e.g. Krolik & Kriss 2001)
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What is the structure of the WA? (e.g. Krongold +2003

Clumpy ?
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What is the structure of the WA? (e.g. Behar+2009)

Continuous and stratified ?




Importance of WA

Geometry of the BH environment

Self sustenance of the BH system (balance between
accretion and ejection)

Enrichment of the host galaxy (wyithe & Loeb 2003)

They may affect dispersal of heavy elements into
the IGM and ICM (Scannapieco & Oh 2004)

Invoked for quenching star formation in Galaxy
Cluster



The X-ray instruments
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The UV instruments

STIS 1150-10,000 10,000
Space Telescope

Imaging

Spectrograph

With higher redshift = ground based telescopes
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The multiwavelength approach

UV spectra (STIS, COS, FUSE):

= limited wavelength band > relatively few ions are
represented (e.g. CIV, NV, Ly series), OVI (FUSE)

= High resolution (R=20,000) = velocity resolved
spectroscopy

X-rays spectra (RGS, LETGS, HETGYS):

= Broad band = dozen of transitions from most abundant
element and variety of ionization states (note: no H!)

= Low resolution (R=400-1000) =2 blurred vision of the lines

(Review in Costantini 2010)
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Photoionization
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The census of a WA

Low ionization WA = UV

Shared component UV/X (CIV, NV, OVI, OVII)
(Higher-v) higher-xi, higher N, component =
OVIII, NelX, absorption from Fe L and Fe K
shell.

. 2 See next talk by Ebrero for a case
we§ of complex connection between
. the UV and X-rays’ ionized gas

(Mrk279 Costantini+oya, Ebrero, EC+10)
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High X-ray ionization gas

SPEX run

* High ionization gas is only visible if the column density is high

enough
—> Observational bias (i.e. there must be also low-NH high gas)

—> high gas mass carried away by the outflow



UFOs: Ultrafast Outflows

Highly ionized, high column density and very high outflow velocity v=0.2-
0.4C gas

+ UFOs are very appealing from the theoretical point of view

But: elusive (often only 1 line is detected), transient, sometimes unsure
detection
Next generation instruments are needed to fully characterize them
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Continuos vs discrete components

Is the warm absorber composed by a handful of

ionized components or is it a continuous stratification
in ionization and/or density?

= |sthere a patternin the & distribution?
= Are those components in pressure equilibrium?
= Does the gas respond promptly to flux variations?




lonization distribution
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The case of Mrksgog
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Wavelength (1)
The dN,,/d € shows a strongly peaked distribution, correspondent
to positively detected components
+ possible fast response to the continuum flux changes (kaastra+11 in prep)
—> evidence of the discrete component nature of the warm absorber



What we measure directly of a WA:

UV: kinematics, line width, covering factors,
abundances, ionization state

X-rays: ionization state, multi-ion

components,
N,=102°23 cm2, outflow velocity.

What we do NOT measure directly:
Gas density and its distribution, gas distance,

gas thickness, opening angle £ = ;2




Outflows and feedback

Mass outflow rate: - M, yr?
M, =47TN,m, Cer sunY'
Mass accretion rate: . — Lbol M. vp
acc 2 SUI"]>/r
cn
Kinetic Luminosity: L, =1/2M o V°

- Density is important for
* AGN physics
* AGN relation with surroundings



UV density diagnostic

Metastable levels, detected in the UV: e.qg. CllII*, Fell*. These
are levels just above the ground level, which are populated
by collisions = strong dependence on density.

X-ray metastable levels are weak and sensitive to higher

densities (e.g OV* Kaastra+os) + A still uncertain
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Density estimate through

variability

Metastable levels detection are sensitive only to given

densities.
Monitoring the variability of the WA ionization as a function

of the continuum flux is in principle sensitive to any density.
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—>If the flux varies on a certain t = the variability of the WA provides a lower limit on
the density = Upper limit on the distance .
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Detmers+08, Longinotti, Costantini +10)




Density estimate through

variability: problems

If the source varies slowly = comparing observations
taken years apart provides loose constraints on n
E.g.: QSO and even Seyfert 1

If the source varies wildly on a short time scale
—> good monitoring but low statistics in different flux bins
E.g. Narrow line Seyfert 1
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Gas Location and feedback budget

NGC3783: ~25pc (Gabel+os)

NGC4151: ~0.1 pcC (Crenshaw & Kraemer 09)

NGC5548 < 7pc (Kraemer+o09)

Mrk279 < 29 pc (Ebrero, EC+10)

NGC3516: 0.2 pc (Netzer+o02)

NGC 4051 0.5-3 |.d.=> 1-3pc (Krongold+oyz, Steenbrugge+og)
e Rate M ,, = 0.01—0.06 M_, yr* ~ Rate M, for many cases

* In some outliers, M, > 10 M__

* Kinetic luminosity is<1% L,

—>Little contribution to the energetics. But is that all?
—> only one component is measured (but multi-comp. in WA)
- WAs originate from different locations



Are Seyfert 1 representative ?

Broad Absorption Line QSO
-Deep blend of lines with

Outflows=1000-40,000 km/s

Seyferta

-Narrow absorption lines
Outflows=100-1000 km/s

—>If different class of AGN are
due solely to orientation effects

—> For every AGN there exists a BAL
component!



VLT campaign on
BAL QSO z=0.8-2

Broad absorption line systems:
V,,:=2000-40,000 km/s

Density is solidly calculated using
Fell* diagnostic.

Distance estimation puts the
Outflow far from the source:
3-6 kpc

Contribution to feedback is
non null: 0.12-2% of
bolometric Luminosity

Note: distance determined for the
Slowest component (4900 km/s)
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BAL outflows in X-rays

BAL QSO are X-ray weak 2>
Very difficult to study!

-V, up to 0.76¢
- Mrate =16-64 M, /yr
eLkin/LBol=0.18-1.7!!

Implications:
Considering a reasonable AGN
life-time (4x108 yr, Ebrero+09)

E,;, ~10%9 erg

E,;, >> 105 erg

(evaporationin the ISM, Krongold+10)

E,., (ho® erg

(ejection in the IGM, Scannapieco & Oh, 2004)
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See talk by Giustini on BAL QSOs




2000 o]

A new hope: Athena-XMS
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- census of the wa

—->variability studies
Calculate density/distance for multiple components
Understand the relative location of the WAs (disk, torus)
Feedback and AGN physics

- abundances



Mrk 5og seen by Athena
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Conclusions

Status of the art of WA studies:

= Important for AGN self-sustenance
= Important for Feedback

= Current analysis pushes at the limit the performances
of present high-res instruments

Time Expensive observations

The future: Athena-XMS will have the resolution
(3eV), and Area (0.5m2) to untie the crucial knot:
= Density of the multi-components gas
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