

INFLOW/OUTFLOW CONNECTION IN ACCRETING BLACK HOLES: SCALING RELATIONS AND THE FUNDAMENTAL PLANE

Sera Markoff (API, University of Amsterdam)

Black holes have an enormous effect on their local environment (via jets and winds!)

(McNamara et al. 2005, Wise et al. 2007)

Black holes have an enormous effect on their local environment (via jets and winds!)

Likely helps regulate the growth of the host galaxy I M-σ relation (BH and galaxy bulge masses correlated)

(McNamara et al. 2005, Wise et al. 2007)

"Big picture questions"

★ How do we track M onto SMBHs over cosmic time?

- i.e.: how does what's happening "out there" determine what makes it onto the black hole? Does it determine it at all? (AK)
- ★ What besides M determines all the activity/states we see in accreting black holes? Spin? Magnetic fields?
 - Somehow we can get all sorts of combinations (weak disk + weak jet or strong disk + strong jet or strong disk + no jet + wind), often all at similar M so other drivers needed
- ★ Assuming we can find a way to know M, a, B, how do these factors work together to explain all the inflow/ outflow phenomenology we see?

We need to know what's going on at $r < 100r_g$

How and why are jets launched rather than winds? Why the different kinds of jets? *Requires more information about conditions near the black hole:* accretion flow "type" and geometry, balance of energy between magnetic fields and plasma, T_e/T_i I launch/flow solutions, mass loading and collimation particle acceleration

Can we compare sources across the M_{BH} scale?

Supermassive BH Active Galactic Nucleus (AGN) (Jets optional) X-ray Binary: Black hole/Neutron star

Donor star

Accretion disk corona

Accretion disk

Jet

compact

corona

Мвн ~ 10⁷⁻⁹ Мо 10⁴⁻⁵ yrs!

М_{ВН} ~ 10 М_⊙ 1 day

AGN fueling example: the Galactic center

(Yusef-Zadeh ea. 93,00; Genzel ea. 03)

AGN fueling example: the Galactic center

(Yusef-Zadeh ea. 93,00; Genzel ea. 03)

AGN fueling example: the Galactic center

(Yusef-Zadeh ea. 93,00; Genzel ea. 03)

Fundamental Plane: Mass & Power scales in black holes

 \star What is it?

★ What drives it?

★ How can we use it as a tool to break "theoretical degeneracies"?

Time variable XRB behavior: The HID Real data with states indicated

Time variable XRB behavior: The HID What are the jets doing?

Mapping XRB states \Leftrightarrow AGN classes?

2006, Kording et al. 2006) Falcke, Körding & SM 2004, SM 2005, Merloni et al. (SM et al. 2003, Merloni, Heinz & diMatteo 2003,

2006, Kording et al. 2006) Falcke, Körding & SM 2004, SM 2005, Merloni et al. (SM et al. 2003, Merloni, Heinz & diMatteo 2003,

2006, Kording et al. 2006) Falcke, Körding & SM 2004, SM 2005, Merloni et al. (SM et al. 2003, Merloni,Heinz & diMatteo 2003,

M81*: simultaneous campaign

But synchrotron emission from a single distribution \mathbf{F}_{ν} of electrons can neve give you a flat spectrum?

How does the flat synchrotron spectrum arise?

 $\Phi \left(A(r,\Phi) \right) V_{j} \leftarrow Q_{j}$

- ★ Convert input power into energy density: $\frac{Q_j}{\pi r_0^2 \beta_j \gamma_j c} = U_B + U_p + U_e$
- ★ Make a choice about energy partition (and fix it, e.g.): $U_p = U_B + U_e$
 - Conservation of particle and magnetic fluxes $\implies \mathbf{B} \propto \mathbf{r}^{-1}, \mathbf{n} \propto \mathbf{r}^{-2}$
 - Assume particles have PL: $n(\gamma) \sim C\gamma^{-p}$, fixed energy partition $\implies C \propto n \propto B^2$
- * Assume optically thick, for PL of electrons: $\alpha_{\nu} \propto CB^{(p+2)/2} \nu^{-(p+4)/2}$
- **★** The part we see is at photosphere where $\tau \sim \alpha_v r = 1 \Rightarrow \alpha_v \propto 1/r$
- **\star** Assume "canonical" PL index p=2, substitute C, B in α_v in terms of r:

$$\frac{1}{r} \propto \left(\frac{1}{r}\right)^2 \left(\frac{1}{r}\right)^2 \nu^{-3} \Longrightarrow r \propto \nu^{-1}$$

$$F_{\nu} \propto CB \left(\frac{\nu}{B}\right)^{-(p-1)/2} r^3 \propto (r\nu)^{-0.5} \propto \text{constant!}$$

(Blandford & Königl 1979; Rybicki & Lightman 1979)

"Signature" flat(ish) emission of compact jets ("cores") $\mathbf{F}_{\mathcal{V}}$ is a conspiracy of $\tau > 1$ and conservation laws

(Blandford & Königl 1979)

(Blandford & Königl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)

1)

(Blandford & Königl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)

11

 $0.6 \text{ Lg } L_X + 0.78 \text{ Lg } M \text{ (erg/s)}$

(movie courtesy of S. Heinz)

(movie courtesy of S. Heinz)

Constraining accretion physics with radio/X-ray correlations

For objects with the *same* mass:

$$L_{\rm R} \propto L_{\rm X}^m \quad m = \frac{\frac{17}{12} - \frac{2}{3}\alpha_{\rm R}}{q} \approx \frac{1.4}{q}$$

Synchrotron: q=2, ADAF/RIAF: q=2-2.3, Radiatively efficient disk/corona: q=1 ipproblematic

> (Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003, Merloni, Heinz & diMatteo 2003, Falcke, Körding & SM 2004)

Some complications to simple correlations

Some complications to simple correlations

Scatter from error in masses, or by including Seyferts? M-σ sources only:

(Gültekin et al. 2009, King et al. 2011)

Using FP to break "theoretical degeneracies" in models, and constrain actual physics

Quality of data is not determining factor

(Nowak et al. 2011)

Modeling compact jets 1.0: HD model

 $\mathbf{Q}_{\mathbf{j}} = \eta \mathbf{\dot{M}} \mathbf{c}^2 = (\mathbf{U}_{\mathbf{e}} + \mathbf{U}_{\mathbf{B}} + \mathbf{U}_{\mathbf{p}}) / (\pi \mathbf{R}^2 \Gamma_{\mathbf{j}} \beta_{\mathbf{j}} \mathbf{c})$

 $n_p = n_e$, $U_B/U_e = k$, $N(\gamma_e) = MW-J(T_e)$

at large z: $\Gamma_{j}\beta_{j}(z) \sim 2\sqrt{\ln(z)}$

Modeling compact jets 1.0: HD model

Modeling weakly accreting black holes

Joint simultaneous fitting: requiring self-similarity

First joint model: M81 \Leftrightarrow V404 Cyg (L_x~10⁻⁷ - 10⁻⁶ L_{Edd})

Why is this so interesting?

			$L < 10^{-7} L_{Edd}$ —	
Parameter	HS-XRBs	M81	A0620	Sgr A*
M (M⊙)	~10	7x10 ⁷	~10	4x10 ⁶
Q _{jet} (L _{Edd})	10 ⁻⁵ — 10 ⁻¹	10 -5	10 -7	10 -9
R_0 (R_g)	2—20	2.4	2—7	2.5
z _{acc} (R _g)	10—400	144	1250	>104
Pelec	2.4–2.9	2.4	3.4	>3.8
PL frac	0.6*	0.6*	<0.6	<0.01
T e (K)	2-5x10 ¹⁰	1x10 ¹¹	2x10 ¹⁰	1x10 ¹¹
equip (1/β)	1—5	1.4	1.5	>10

(SM, Nowak & Wilms 2005, Migliari et al. 2007, Gallo et al. 2007, SM, Bower & Falcke 2007, SM et al. 2008, Maitra et al. 2009., van Oers, SM et al., 2010, Nowak et al. 2011)

Summary

- Accretion states in XRBs seem to correspond to AGN classes in *some* cases. Entire HID? Role of spin? Still incomplete.
- Fundamental Plane most robust for hard state/LLAGN, we think we understand the physical drivers:
 - scaling: m/M dependence of energy densities, compact jets plus radiative inefficiency in X-rays
 - Synchrotron/IC: both possible, increasing evidence for oddly smooth transition between them states within our states?
- Reproducing scaling relations is not enough! To constrain physics, need models that can also explain SEDs across M_{BH} scale
 - ➡ Joint fitting: Break degeneracies especially at low-luminosity. Supports that HS XRBs ⇔ LLAGN, and that Sgr A* during flares ⇔ quiescent BHBs [NEW! 3Msec with Chandra HETG]
 - ➡ AGN fueling: supports scenario where larger (>R_c) environment not driving AGN phenomenology, at least at low-lum

***** Outlook: different states; compact jets vs ballistic jets vs winds!