

Blac hol X-ray binary variability

Tomaso Belloni (INAF - Osservatorio Astronomico di Brera)

20 JULY 2011

THE PROMISE OF X-RAY BINARIES

- The path to General Relativity through accretion
- The path to accretion through General Relativity

CHARACTERISTIC TIME SCALES

500 Hz

GR + OBJECT

- Neutron stars: spin frequency
- Keplerian frequency
- Relativistic precessions:
 - Periastron precession
 - Lense-Thirring precession

1200 Hz

EARLY HISTORY: LARGE VARIABILITY

EARLY HISTORY: FAST VARIABILITY

- In the beginning.. Cyg X-1
- Fast aperiodic variations
- Difficult to follow with small instruments

PHOTONS ARE EVERYTHING

- Sensitivity linear with flux
- Imaging reduces background only

TO VARY OR NOT TO VARY?

VARIABILITY COMPONENTS

ENERGY DEPENDENCE AND LAGS

Time/phase lags between energies from Fourier spectrum

EVOLUTION OF TRANSIENTS

Hardness-Intensity Diagram (HID)

Time (days)

HARD/VARIABLE & SOFT/QUIET

HARD/VARIABLE & SOFT/QUIET

RMS-INTENSITY DIAGRAM

MISSING..

Where are the good frequencies?

What happens in the middle of the diagrams?

INTERMEDIATE STATES: QPOs

- Intermediate spectrum
- Intermediate rms

Transitional states

HARD-INTERMEDIATE: QPO + NOISE

• Smooth evolution of properties - harmonics

SAME COMPONENTS - Radius connection?

- Frequency-modulated oscillation?
- Frequency range for Lense-Thirring
- Complex lags
- Hard oscillations

Ratti & Belloni et al. (2011)

A PECULIAR OSCILLATION

- Limited frequency range
- Less rms: no flat-top noise
- Not Lorentzian?

A PECULIAR OSCILLATION

- Associated to a specific rms
- Same energy dependence
- Energy spectrum (Stiele)

NOT LORENTZIAN?

Nespoli et al. (2003)

CONNECTION WITH RADIO JETS?

- Radio emission goes with it ejections close to transitions
- Some variability from the jet itself?

FREQUENCY CORRELATIONS

- All frequencies correlate
- NS binaries follow

Wijnands & van der Klis (1999)

Psaltis, Belloni & van der Klis (1999)

1.000 Propersory (760)

Belloni, Psaltis & van der Klis (2002)

LINK TO GENERAL RELATIVITY?

- Emission process must be added
- Type-B (peculiar) QPO does not fit

High-Frequency QPOs

High-Frequency QPOs

RXTE and THE FUTURE

- All this thanks to 15 years of RXTE
- Timing is important!
- The near future: ASTROSAT (2011)
- Better than RXTE above > 20 keV

	UVIT/OPT	SXT	LAXPC	CZTI	SSM
Detector	UV: photon counting CCD Opt: CCD photometer	X-ray CCD (at the focal plane)	Proportional Counter	CdZnTe detector array	Position- sensitive proportional counter
Imaging property	imaging	imaging	non-imaging	imaging (< 100 keV)	imaging
Optics	Twin Ritchey- Chretien 2 mirror system	Conical foil (~Wolter-I) mirrors	Collimator	2-D coded mask	1-D coded mask
Bandwidth	130-320 nm	0.3-8 keV	3-100 keV	10-150 keV	2-10 keV
Geometric Area (cm ²)	1250	250	10800	1000	180
Effective Area (cm ²)	60 (depends on filter)	125@0.5 keV 200@1-2 keV 25@6 keV	6000@5-30 keV	500 (<100 keV) 1000 (>100 keV)	~40@2 keV 90@5 keV (Xe gas)
Field of View	0.50º dia	0.35° (FWHM)	1º x 1º	6° x 6° (< 100 keV) 17° x 17° (> 100 keV)	
Energy Resolution	<100 nm (depends on filter)	2%@6 keV	9%@22 keV	5%@10 keV	19%@6 keV
Angular Resolution	1.8 arcsec	3-4 arcmin (HPD)	1-5 arcmin in scan mode only	8 arcmin	~10 arcmin
Time resolution	10 ms	2.6s, 0.3s, 1ms	10 microsec	1 ms	1 ms
Typical obs. time per target	30 min	0.5 - 1 day	1 - 2 days	2 days	5 min
Sensitivity (Obs. Time)	21 st magnitude (5σ) (1800s)	10 microCrab (5σ) (10000s)	0.1 milliCrab (3σ) (1000s)	0.5 milliCrab (3σ) (1000s)	~30 milliCrab (30) (300s)

LOFT

- Selected for assessment by ESA
- Launched in 2020
- 12 m² effective area

LOFT: BH QPOs

- Pinning of GR frequencies
- Identification of ν_{K} and ISCO
- Additional peaks?

- BH spin measurement from radius
- Feedback on accretion studies

