AGN X-ray Variability and AGN/Binary Unification

lan M^cHardy

University of Southampton

Talk Outline

- 1. AGN / binary `states'
- 2. Black Hole Timing unification
- 3. Structure of the emission region origin of the variations
- 4. X-ray / optical & X-ray / radio variability

TIMING STATES

Frequency x Power **`Unfolded' Power Spectral Density (PSD)**

NGC 4051 0.1 RXTE+XMM Cyg X-1 low state 0.01 0^{-3} NGC 3516 state 10 10^{-5} $10^{-8} \ 10^{-7} \ 10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 0.01$ 10 100 Frequency (Hz)

Cyg X-1 Low-hard state PSD:

Can be described either as powerlaw with two bends, or as sum of `Lorentzians'

 NGC4051 partly like Cyg X-1 low-hard state, but no second break

More like high-soft state of Cyg X-1

•High break timescale scales approximately linearly with mass

(M^cHardy et al., 2004)

PSDs of other AGN?

McHardy et al 2005

No (timing) hard states confirmed yet. NGC3227 has a hard spectrum (Γ =1.6) Timing may be more fundamental than spectra

Lack of low state systems is probably a selection effect. Present targets are X-ray bright - higher accretion rates

[Binary soft state systems are less variable as dominated by steady emission from disc.] 5

- Take lightcurves in 2 different energy bands
- Split each lightcurve into separate Fourier components
- Measure time lag between the two energy bands as function of Fourier timescale.
- (See Nowak and Vaughan 1996)

Lorentzians and Time Lags: Akn564

For binaries in hard or VHS state, lag is ~constant when one Lorentzian dominates

..same in Akn564 (As $\dot{m} \ge 1$ implies VHS, not `hard' state)

High Frequency AGN lags: Diagnostic of reprocessing geometry

Fabian et al 2009

Fourier Transform of the response function. [See Peterson 1993 for response functions.] Emmanoulopoulos, McHardy and Papadakis 2011

MCG6 and Mrk766 almost identical

Lag Comparison

(Just splines, not physical fits)

Average of MCG6 and Mrk766 – ATLS

No simple scaling with, eg, PSD bend timescale, or estimated black hole mass.

Lags – Model fits to ATLS

Miller et al 2010 model

-reprocessing by wind

Zoghbi et al 2010 model

-Combination of reprocessing from disc and propagating accretion fluctuations.

Not perfect, but better fit

AGN QPO: REJ1034+396

Gierlinkski et al 2008; Middleton et al 2009, 2010

Similar to 67Hz QPO in GRS1915+105 with pure mass scaling

(Note rough lines of linear scaling, not fits, from Cyg X-1 in its `low-hard' and `high-soft' states)

Proper 3D fit to T_b, M, \dot{m}_E

(eg, for M=10⁸ M_{\odot}, mdot =0.1,T_B = 6d)

T_{B} and Linewidth, V

(McHardy et al, 2006; Summons et al in prep)

IMPLICATION: NLS1 same as other AGN but have smaller ratios of M / \dot{m}_E Small masses are selection effect as \dot{m}_E can't easily exceed unity

(eg McH 1988; Green et al 1993; Hayashida et al 1998; Gierlinski et al 2008; Kelly et al 2010)

Gierlinski et al 2008

See also talk here by Gabriel Ponti.

(Low frequency slope fixed at -1)

Jet-dominated sources: 3C273

OVERALL PSD OF 3C273

Good fit to `soft' state model Break timescale ~ 10 days

(McHardy et al, in prep)

Jets and timescales

M81 – radio loud, hard state

M81 Timescale scaling

Origin of the Variability Observations: RMS Variability (σ) vs. FLUX

Amplitude of short timescale variations respond to long timescale average flux.

Same in NGC4051 as in GBHs.

Theory: a fluctuating accretion flow drives the variability (e.g. Lyubarskii 1997)

Variations propogate inwards. Amplitude of fluctuation in each annulus is modulated by total amplitude of inward progating fluctuations.

Separate source of variability and source of emission

Southampton

Fluctuations eventually hit, and modulate, the X-ray emitting region (Kotov et al 2001; Churazov et al 2001; Arevalo and Uttley 2006; Uttley et al 2011)

Mkn335: PSD ratios vs Frequency and Energy

Mrk 335

More variability at high frequencies at high energies

MKN335 Low frequency Lags

Lag of higher energy relative to low energy (0.2-0.4 keV)

The lag is then the time for the fluctuation to travel between centroids.

Optical Variability in AGN: Reprocessed X-rays or intrinsic disc variability?

 $T \propto M_{f}$ $T \propto M_{f}$ $T \propto M_{f}$ M_{f} M_{f}

NGC4051

 $T \propto M_{BH}^{-1/4} \dot{M}^{1/4} R^{-3/4}$

(\dot{M} in Eddington units and R in gravitational radii)

Solid line gives fit of lags between optical bands to reprocessing model

(Cackett et al, 2006; Sergeev et al 2005,6)

Optical lags by 1.5+/- 0.5 d (above 99% confidence)

Breedt et al 2010

Short term correlation but different long term trends

Optical probably a combination of X-ray reprocessing and intrinsic disc variations (inwardly propagating fluctuations)

(Breedt et al, 2009, MNRAS) 34

X-ray/optical peak correlation

X-ray/optical peak correlation coefficient vs. disc temperature

NGC4395 (~10⁵ solar mass BH)- Swift

NGC4395 does not agree with pure mass scaling but is consistent with disc temperature scaling

Optical and X-ray PSDs

Simulated optical and X-ray PSDs

Breedt et al in prep.

Some observed optical PSDs exceed the X-ray PSDs at low frequencies. Requires additional intrinsic disc variability.

1. Liners – NGC7213 and M81

2. Seyfert – NGC4051

8 GHz lags X-rays by ~24 days 5 GHz lags X-rays by ~40 days

M81 X-ray and 15GHz lightcurves

AMI – Pooley OVRO – Richards, Readhead, Pearson

X-ray and 15GHz lightcurves of M81

M81 X-ray and 15GHz

jet model

From Falcke et al 2004

ing assuming ratione s

NGC5548 – Wrobel 2000 - no parallel X-ray observations

NGC4051

 Looks just like a classical radio galaxy – except much smaller and of much lower luminosity.

> Component separation is ~50 light years

(See also Girolleti and Panessa 2009)

NGC4051 – Global VBLI

NGC4051 VLA A array observations

NGC4051 Radio vs. X-ray – A array

NGC4051 Radio vs. X-ray - all arrays

No strong evidence for large amplitude radio variability

NGC4051 on radio `fundamental plane' for jet-dominated sources

NGC4051 as a coronal radio source?

From Fig.6 of Laor and Behar 2008

Maybe a combination of fast inner jets and slower, more diffuse, outflow, or corona

Or just jet orientation?

59

CONCLUSIONS

AGN probably occupy all the same spectral-timing states as GBHs.

PSD bend timescales scale with mass and accretion rate; high frequency PSD normalisation probably purely mass dependent.

Direct link between X-ray timing properties and host galaxy linewidth.

Short timescale optical variability in Seyferts dominated by reprocessing of X-rays, strength dependent on disc temperature.

Optical variability on longer timescales from intrinsic disc variability.

Good correlation between X-ray and radio in liners (~10⁻⁴ Eddington) consistent with jet emission

In higher accretion rate Seyferts, origin of radio emission is mystery.