

The Neutral Atomic Interstellar Medium in the Nearby Universe

Elias Brinks

Centre for Astrophysics Research, University of Hertfordshire, UK

University of Hertfordshire

26th March 2018

Interstellar Medium in the Nearby Universe, Bamberg

THINGS LITTLE THINGS

VLA-ANGST LVHIS SHIELD FIGGS SPARC VIVA HALOGAS CHILES WALLABY

MHONGOOSE

Cosmic dawn?

HI transition

Predicted by van de Hulst (1944) detected by Ewen and Purcell (1951)

very low transition rate: 2.9×10⁻¹⁵ s⁻¹ —> 10⁷ yr lifetime and consequently narrow intrinsic line width —> excellent for probing velocity structure (and dispersion)

line is optically thin (mostly) —> column density tracer

but: low brightness temperature —> faint —> out to $z \sim 0.2$

HI and dust are well mixed; **B**-field frozen in

Walter et al. (2008) AJ 136, 2563

LITTLE THINGS

Hunter et al. (2012) AJ 144, 134

Galaxy Dynamics in THINGS — The HI Nearby Galaxy Survey

NGC 2403 — Gas and Stars

15,000 light years

NGC 2403 — Rotation

The HINearby

Galaxy Survey

THINGS

Color Coding: THINGS Atomic Hydrogen (Very Large Array) Old stars (Spitzer Space Telescope) Star Formation (GALEX & Spitzer)

Color coding: THINGS HI distribution: Red-shifted (receding) Blue-shifted (approaching) Rotation Curve

Image credits: VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

Very Large Array - ACS Nearby Galaxy Survey Treasury

Ott et al. (2012), AJ, 144, 123

Common characteristics of the (LITTLE) THINGS, VLA-ANGST and SHIELDS surveys resulting in observations of >100 nearby galaxies (< 10 Mpc)

- VLA B+C+D configuration HI observations at 1.3, 2.6, or 5.2 km s⁻¹ velocity resolution tracing low density (~10¹⁹ cm⁻²) HI
- 6" angular resolution (110 pc at 3.7 Mpc, the typical distance of the galaxies)
- *GALEX, Spitzer*, and UBVJHK plus Hα ancillary data gives snapshot of star formation process on 3 timescales

Scope

- concentrate on what we can learn about the (atomic) ISM by studying (nearby) extragalactic systems (excluding gas-poor Early-Type systems)
- * Milky Way will be covered in the following talks
- HI global distribution, velocity dispersion, vertical distribution, ISM porosity
- * HI in the SKA era

The phases of the ISM

Table 1: Components of the interstellar medium ^[3]						
Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (particles/cm ³)	State of hydrogen	Primary observational techniques
Molecular clouds	< 1%	80	10–20	10 ² –10 ⁶	molecular	Radio and infrared molecular emission and absorption lines
Cold Neutral Medium (CNM)	1–5%	100– 300	50-100	20–50	neutral atomic	H I 21 cm line absorption
Warm Neutral Medium (WNM)	10–20%	300– 400	6000-10000	0.2–0.5	neutral atomic	H I 21 cm line emission
Warm Ionized Medium (WIM)	20–50%	1000	8000	0.2–0.5	ionized	Ha emission and pulsar dispersion
H II regions	< 1%	70	8000	10 ² -10 ⁴	ionized	Ha emission and pulsar dispersion
Coronal gas Hot Ionized Medium (HIM)	30–70%	1000– 3000	10 ⁶ –10 ⁷	10 ⁻⁴ -10 ⁻²	ionized (metals also highly ionized)	X-ray emission; absorption lines of highly ionized metals, primarily in the ultraviolet

Gas surface density in M_{\odot} pc⁻² for HI and H₂ and SFR density in units of 10⁻³ M_{\odot} yr⁻¹ kpc⁻²

normalised radius r/r_{25}

Bigiel et al. (2008) AJ 136, 2872

Recap

HI surface density is largely flat at ~10^{21} cm^{-2}~(9~M_{\odot}~pc^{-2})

SFR follows H₂ distribution

velocity dispersion decreases monotonically from ~15 km s⁻¹ to 6 km s⁻¹

velocity dispersion within the disk can be accounted for entirely as a result of SF (i.e., SN) driven turbulence

beyond the optical disk, another mechanism is needed to maintain a flat, 6 km s⁻¹, level: magneto-rotational instability

Schmidt - Kennicutt relation

A relation connecting Σ_{SFR} to Σ_{gas} :

 $\Sigma_{\rm SFR} = \mathbf{A} \cdot (\Sigma_{\rm gas})^{\rm N}$

(going back to Schmidt 1959)

Schmidt - Kennicutt relation

Previous studies include, e.g.,

- * Schmidt (1959): N≈2 (Milky Way)
- * Kennicutt (1989,1998): N≈1.4 (sample of ~90 nearby galaxies)
- Wong & Blitz (2002): N=1.2-2.1 (6 nearby spiral galaxies)
- * Boissier et al. (2003), Heyer et al. (2004): N≈2 (16 galaxies) and N≈3.3 (M33)

SF from THINGS

all THINGS galaxies

Bigiel et al. (2008) AJ 136, 2872

Schmidt-Kennicutt: $\Sigma_{SFR} \sim (\Sigma_{gas})^N$

- * Σ_{H2} is tightly correlated with Σ_{SFR} (N_{H2} = 1.0 ± 0.2), 0.3 dex spread (uncertainty mainly in SFR proxies)
- Data are compatible with a molecular gas SK-relation, and a constant SFE (τ~2 x10⁹ yr)

* $\Sigma_{\rm HI}$ saturates at ~ 10 M $_{\odot}$ pc⁻²

Summary on Star Formation

in "normal" galaxies: gas surface densities ~1 - 200 $M_{\odot}pc^{\text{-2}}$

- * HI turns almost completely molecular above 9 M_☉ pc⁻² (12 M_☉ pc⁻² when including He)
- * Where gas is predominantly molecular, the Schmidt-Kennicutt relation has a powerlaw with index N = 1.0 ± 0.2
- In this regime the SFE is constant; the gas depletion time corresponds to 2 x 10⁹ yr, independent of environment

- Where HI dominates, SF efficiency decreases monotonically with the ratio H₂/HI; this in turn scales with mid-plane hydrostatic pressure (and also dust-to-gas ratio), i.e. scales with stellar light.
- SF primarily depends on H₂
 (i.e., cold, dense ISM), not total gas (HI + H₂)
- relation holds in the outskirts where ISM is HI dominated

SF in spiral outskirts

CO stacking byAndreas Schruba brings out low surface brightness CO in spirals in their outskirts

Schruba et al. (2011), AJ, 142, 37

The porous ISM: NGC2403

The porous ISM: NGC2403

Bagetakos et al. (2011) AJ 141, 23

Porosity of the ISM

- ~1000 HI holes in 20 THINGS spirals, ranging from ~100 pc (resolution limit) to ~1 kpc
- expansion velocities: 4 36 km s⁻¹
- * HI hole lifetime limited by shear
- * HI holes are compatible with SF origin
- ISM 2D and 3D porosity is higher in later type spirals and dIrr

HI Holes and SF

Bagetakos et al. (2011) AJ 141, 23

HI scaleheight

spiral

for details on HI scaleheights, see Banerjee et al. (2011) MNRAS 415, 687 and references therein.

Gas and dust: well mixed

red: HI 21cm (VLA–THINGS) green: cont.subtr. 8 micron (SINGS)

VIVA survey

Chung et al. (2009) AJ 138, 1741

Highest HI in emission detected

CHILES survey HI detection of J100054 at z = 0.376(Fernández et al. 2016, ApJL 824, L1)

The Future: SKA

- next generation All-Sky (i.e., Southern hemisphere) HI surveys will be done with SKA Precursors: MeerKAT (MHONGOOSE) and ASKAP (WALLABY).
- MeerKAT will map 1000s of nearby galaxies (à la THINGS); WALLABY will target 500000 galaxies out to *z* ~ 0.5, but at lower resolution.
- current instruments can either provide high resolution, or high surface brightness sensitivity, but not both; also, their sensitivity limits observations to modest redshift.
- * Only the full SKA will provide both the sensitivity and resolution to map galaxies at sub-kpc resolution out to $z \sim 1$

SKA projected sensitivity

Figure 7. Sensitivity comparison of some existing and planned facilities. For SKA, the feed systems that are not yet planned for deployment are indicated by the dot-dashed line. Dry conditions (PWV \approx 5mm) are assumed for the SKA and VLA sites while the same PWV = 5mm corresponds to poor conditions for the ALMA site.

The End