X-raying the hot phase of the LMC interstellar medium

Pierre Maggi

CEA Saclay

The XMM-Newton LMC survey collaboration: F. Haberl, P. Kavanagh, M. Sasaki, M. Filipović, Y.-H. Chu, S. Snowden, S. D. Points, C. Maitra

and F. Acero & J. Ballet (CEA Saclay)

Interstellar Medium in the Nearby Universe, 26-28 March 2018, Bamberg

- Introduction
- 2 THE MAGELLANIC CLOUDS IN X-RAYS
- 3 DATA ANALYSIS
- RESULTS: PROPERTIES OF THE HOT GAS AND LINK WITH STAR FORMATION

The hottest component of the multi-phase ISM is a tenuous plasma ($\lesssim 1~\text{cm}^{-3}$) at high temperature of $\gtrsim 10^6~\text{K}$ ($\gtrsim 0.1~\text{keV}$) \mapsto This shines brightly in X-rays. The largest component of the ISM *by volume*.

... AND SPIRAL GALAXIES

Chandra view of M83 (Long+ 2014)

Origin of the hot interstellar medium

- → Stellar feedback
- Winds from massive stars
- Shocks from supernova remnants
- → AGN activity
- ▶ Relatively more important in elliptical galaxies ? (e.g. Diehl & Statler 2007, 2008)

3D simulations of ISM including stellar feedback (Kim+2013)

THE DIFFUSE EMISSION — STAR FORMATION CONNECTION

- ➤ Clear morphological similarities, in particular spiral arms (Strickland+2004)
- \mapsto A linear Lx SFR relation, but conflicting results for the coefficient [Strickland+04, Owen+09, Mineo+12]:
- Can it be better calibrated? Behaviour at low SFR?

 L_X – SFR relation for star forming galaxies (Mineo+2012)

RASS (left), M82 in X-rays (middle), and Chandra Deep Field South (right)

Issues in the Milky Way

- Strong absorption
- Distance uncertainties
- ▶ line-of-sight confusion
- ▶ Need large scale coverage

Issues outside the Local Group

- ► Faint
- ► Spatial resolution (integrated study)
- ► Unresolved source contamination

RASS (left), M82 in X-rays (middle), and Chandra Deep Field South (right)

Issues in the Milky Way

- Strong absorption
- Distance uncertainties
- ► line-of-sight confusion
- ► Need large scale coverage

Issues outside the Local Group

- ► Faint
- ► Spatial resolution (integrated study)
- Unresolved source contamination

THE MAGELLANIC CLOUDS

- ► Nearby (50 kpc and 62 kpc)
- ► High latitude / low absorption
- ▶ Well resolved with XMM (1' ~ 15 pc in LMC)
- ▶ Point source down to a few 10³³ erg/s

A rather constant temperature of 0.2 keV (2.3 $\times 10^6$ K). A total luminosity of 7×10^{36} erg/s (absorbed), or 4×10^{37} erg/s (unabsorbed).

We would like a mapping of our mosaic to reach a constant S/N for spectral fitting:

Use a **weighted Voronoï Tesselation** (WVT) algorithm (Diehl & Statler 2006), on a count map of the diffuse emission (and associated variance):

Diffuse counts = Observed counts - Out-of-time - Background (X-ray/instrumental)

Simultaneous fitting (up to 62 spectra!)

Two-temperature fitting (only one spectrum shown)

PHYSICAL PARAMETERS

- Temperatures
- Emission measure : $EM = \int n_e n_H dV$
- Abundances of main elements (O, Ne, Mg, Fe)

OTHER PARAMETERS

- N_H column (**up** to the gas)
- Surface brightness of the hot gas

- Introduction
- THE MAGELLANIC CLOUDS IN X-RAYS
- 3 DATA ANALYSIS
- RESULTS: PROPERTIES OF THE HOT GAS AND LINK

WITH STAR FORMATION

Temperature distribution Parameter maps

X-ray vs. SFR

Same range of temperature as in external galaxies (e.g. Mineo+12)

S/N of 80

~ 50 arcmin² (median)

2-kT model with free abundances

No strong variation (point-to-point)

Uniform when averaged over large regions

(SFR taken from Harris & Zaritsky 2009.)

Luminosities corrected for absorption ≥ 100 regions with consistent analysis. SFR spans several orders of magnitude.

Less than linear correlation

(SFR taken from Harris & Zaritsky 2009.)

Luminosities corrected for absorption

≥ 100 regions with consistent analysis. SFR spans several orders of magnitude.

Less than linear correlation

Lower $L_{X \text{ diff}}/SFR$ than for spiral galaxies (with higher SFRs):

- Lower metallicity ?
- Hot gas escape?

 $L_X^{
m diff}$ vs. SFR (<25 Myr) integrated over regions with different star formation histories (Harris & Zaritsky 2009) and supergiant shells (SGS, Meaburn 1980). Dashed and dotted lines are $L_X^{
m diff}$ /SFR relations from the literature. \mapsto OK within scatter, and south-east outliers.

Left: Total N_H column density (top, Kim+2003), averaged over the Voronoï bins (bottom). Right: " N_H fraction": $N_H^X/N_H^{21 \text{ cm}}$ gives the line-of-sight position relative to the main gas disk

In front of the gas disk in the vast north-west region → signs of outflow?

X-RAY DIFFUSE EMISSION OF THE LMC ISM

- Combining hundreds of exposures
- Homogeneous coverage of the central area
- Extensive spectral analysis
 - Parameter maps at ≈100 pc scale
 - Uniform abundances in gas phase
- Probing the L_{χ}^{diff} /SFR relations down to unprecedented low SFR regime
- Sub-linear relation
 - Outflows?
- Multi-wavelength imaging
 - Radio
 - Far/Mid Infrared
 - Gamma rays

- Already "imaged" with Einstein/IPC (left, Wang+1991),
 - → Two main temperature components in integrated spectrum.
- Clearly seen in pointed ROSAT PSPC survey (centre, Haberl+1999)
- Temperature map (right) from Sasaki+2002 (1-kT fit).

RASS maps (0.1-2.4 keV) and Galactic N_H in a 50° box around the LMC.

Missing ingredients:

- ► Knowledge of the AXB spectrum
- ► Dealing with RASS artefacts.

Param	Value
kT_1	57 ± 3 eV
kT ₂	121 ⁺¹⁵ ₋₁₀ eV
kT ₃	224 ± 5 eV
CXB	4.4×10^{-4} ph cm ⁻² s ⁻¹

AXB SURFACE BRIGHTNESS:

$$SB_{AXB}(0.3-10 \mathrm{keV}) = R_{45 RASS} \times m_i (N_{H Gal})$$

Left: AXB surface brightness map (0.3-10 keV), in units of erg cm⁻² s⁻¹ arcmin⁻². Right: Masked point sources, LMC, Galactic plane ($|b| < 10^{\circ}$), and "LTE strip".

THE AXB IN LMC IS FLAT AT A FEW %:

 $SB_{AXB} (0.3-10 {\rm keV}) = 9.6 (^{+1.2}_{-1.7}) \times 10^{-15} \ {\rm erg \ cm^{-2} \ s^{-1} \ arcmin^{-2}} \ ({\rm median} \ (^{Q90}_{Q10})).$

Include the AXB model XSPEC *atable*, taking as parameters the size in $arcmin^2$ of the spectrun, $N_{H~gal}$, and $N_{H~LMC}$. One constant to account for 20 % scatter \mapsto **This adds only one free parameter per** *observation*.

16 / 16

AXB SURFACE BRIGHTNESS:

$$SB_{AXB}(0.3 - 10 \text{keV}) = R_{45 \text{ RASS}} \times m_i (N_{H \text{ Gal}})$$

The AXB in LMC is flat at a few %:

$$SB_{AXB}(0.3-10 {\rm keV}) = 9.6(^{+1.2}_{-1.7}) \times 10^{-15} \ {\rm erg \ cm^{-2} \ s^{-1} \ arcmin^{-2}} \ ({\rm median} \ (^{Q90}_{Q10})).$$

Extraction area of the spectrun, $N_{H \text{ gal}}$, and $N_{H \text{ LMC}}$ fixed. \mapsto This adds only one free parameter per observation.

PIERRE MAGGI (CEA SACLAY) X-RAYING THE HOT ISM OF THE LMC ISM 2018, BAMBERG

- Use the Filter Wheel Closed data available through XMM-Newton SOC.
- Cast the events of each pointings using attitude file, making sure to obtain spectrum from same detector position.
- Use phenomenological models (PN: Sturm 2012, MOS: Maggi+2016)

After fitting each spectra, we can include the best-fit results in our background model, only allowing a free renormalisation parameter

→ This adds one free parameters per spectrum.

A second instrumental background component, soft proton contamination (SPC) is a *flaring* component. We can identify it in two ways:

- i) Ratio of high energy count rates in the FWC data (QPB + no protons) to that in the (point source filtered) SOURCE data (QPB + protons)
- ii) Using (a variation of) the Fin/Fout ratio script of Molendi+2014, available through XMM SOC.
- We filter out the most affected exposures (about 10 %).
- In the other, we add a background component following prescription of Kuntz and Snowden 2008 (not convolved with RMF).
- → This adds two free parameters per spectrum.

We would like a mapping of our mosaic to reach a constant S/N for spectral fitting:

i) Get count maps of the diffuse emission and associated variance:

$$C_{\text{diff}}^{k,i} = \left[C_{\text{observed}}^{k,i} - f_{OoT} C_{OoT}^{k} - C_{FWC}^{k,i} - C_{XBB}^{k,i} \right] \times \text{Mask}^{i}$$
 for instrument k , band i

$$\left(\Delta C_{\text{diff}}^{k,i}\right)^{2} = \left[C_{\text{observed}}^{k,i} + f_{\text{OoT}}C_{\text{OoT}}^{k} + C_{FWC}^{k,i} + \sigma_{XRB}^{2}C_{XRB}^{k,i}\right] \times \text{Mask}^{i}$$

 $C_{XRB}^{k,i}$ is the count rate of our AXB model (for any EPIC instrument) in band i, multiplied by the corresponding exposure map.

ii) Use a weighted Voronoï Tesselation (WVT) algorithm (Diehl & Statler 2006).

Use various S/N thresholds: low for imaging, medium for simple fitting, high for detailed spectral results (e.g. abundances).