Nigel Maxted ISM Meeting, Bamberg March 2018 Plane CO Survey

Catherine Braiding, G. F. Wong, **Nigel I. Maxted**, D. Romano, M. G. Burton, R. Blackwell, <u>Miroslav. D. Filipović</u>, M. S. R. Freeman, B. Indermuehle, J. Lau, D. Rebolledo, G. Rowell, C. Snoswell, N. F. H. Tothill, F. Voisin, and P. de Wilt

University of New South Wales, Sydney, Australia Western Sydney University, Penrith, Australia Armagh Observatory and Planetarium, Armagh, UK University of Adelaide, Adelaide, Australia CSIRO Astronomy & Space Science, Australia Telescope National Facility, Epping, Australia Universidad de Chile, Santiago, Chile

The Mopra Southern Galactic Plane CO Survey

¹²CO, ¹³CO, C¹⁸O, C¹⁷O(1-0)

l = 257

|*b*| < 0.5°

Juter

UR

b

< 1.0°

Macka

Sunshine Coast Brisbane oowoomba Gold Coast

Newcastl

Sydney

OUFENSLAND

CO GPS Observing Strategy

*Scans the Galactic plane at a speed of ~3 square degrees every 4 nights for orthogonal scans.

7mm	<u>12mm</u>
CS(1-0)	NH ₃ (1,1)
SiO(1-0)	NH ₃ (2,2)
CH ₂ N. CH3OH	NH ₃ (3,3)
	Halpha
Beam ~1'	And the second second
Vel Res. ~0.21 .	Beam ~2'
km/s	Vel Res.

<u>3mm</u>				
Frequen- cy (GHz)	Isotopo- logue	V _{low} (km/s)	V _{high} (km/s)	
110.1	¹³ CO 1-0	-475	+270	
109.7	C ¹⁸ O 1-0	-495	+255	
112.3	C ¹⁷ O 1-0	-235	+130	
115.2	¹² CO 1-0	-550	+525	

Beam ~36"

Vel. Res. ~0.12 km/s

Mopra CO SGPSurvey: Availability

- Central Molecular Zone (Blackwell, et al., in prep.)
- Data release III: G300 to G350, |b| < 0.5 (Braiding, et al., 2018, accepted Feb)

Tother Mopra studies: http://www.physics.adelaide.edu.au/astrophysics/MopraGam/

Data Release III (DR3) /=300 - 350°

Cherenkov Telescope Array (CTA): The next generation gamma-ray telescope

x10 better sensitivity, better FoV + angular resolution, wider energy coverage, collection area >few km2, wider survey capabilities

The HESS Galactic Plane Survey

Gamma-rays travel in straight lines

ooking for CR sources with gamma-ray astronomy

ooking for CR sources with gamma-ray astronomy

RXJ1713.7-3946 (X-rays and CO, Sano et al 2010) 2. Pion bumps

0.0

ooking for CR sources with gamma-ray astronomy

Abdalla et al, 2017.

RX J1713.7-3946

Density (X10²¹ cm

Fukui et al 2014

H.E.S.S. angular resolution of 0.048° (0.036° above 2 TeV)

Current highest res gamma-ray image ~100 arcsec

No spectral variation on a scale of ~10 arcmin (limited by statistics)

The future – CTA (South)

