Stellar Feedback in Giant H II Regions: a Case Study of M101

Wei Sun

Purple Mountain Observatory, CAS Mar. 27, 2018

collaborators: Y.-H. Chu (ASIAA), Q. D. Wang (UMASS), R. Chen (Bonn), L. Ji. (PMO), Y. Chen (NJU)

ISM2018@Bamberg

Outline

- Motivation
- Targets and observations
- Results
 - kinematics of 10⁴ K ionized gas;
 - tallying mechanical energy in multi-phase medium;
- Discussion: case of H1105 downtown

Motivation

Stellar feedback plays an important role in the evolution of host galaxies;

Motivation

Stellar feedback plays an important role in the evolution of host galaxies;

Our approach

 Tallying the mechanical energy reserved in multi-phase gas, in two giant H II regions, NGC 5461 and NGC 5471, in M101 (d=6.8 Mpc)

 Tallying the mechanical energy reserved in multi-phase gas, in two giant H II regions, NGC 5461 and NGC 5471, in M101 (d=6.8 Mpc)

- Tallying the mechanical energy reserved in multi-phase gas, in two giant H II regions, NGC 5461 and NGC 5471, in M101 (d=6.8 Mpc)
 - most luminous ones in nearby galaxies ($L_{H\alpha}$ ~10⁴¹ erg s⁻¹), requires ionizing power of ~2000 O5V stars.

- Tallying the mechanical energy reserved in multi-phase gas, in two giant H II regions, NGC 5461 and NGC 5471, in M101 (d=6.8 Mpc)
 - + most luminous ones in nearby galaxies ($L_{H\alpha}$ ~10⁴¹ erg s⁻¹), requires ionizing power of ~2000 O5V stars.

- Tallying the mechanical energy reserved in multi-phase gas, in two giant H II regions, NGC 5461 and NGC 5471, in M101 (d=6.8 Mpc)
 - + most luminous ones in nearby galaxies ($L_{H\alpha}$ ~10⁴¹ erg s⁻¹), requires ionizing power of ~2000 O5V stars.
 - harboring 5 and 7 10⁴ M_{sun}-class clusters (Chen+2005), most of them are younger than 5 Myr.

Data sets

- Cold neutral gas: H I 21-cm data cube from THINGS survey (Walter+2008);
- + 10⁴ K ionized gas: Hα profiles taken by KPNO Mayall telescope echelle spectrograph + HST/ WFPC2 narrow band image;
- 10⁶ K hot gas: Chandra M101 Ms Project (Kuntz+ 2010, covering NGC 5461, but not NGC 5471);

Data sets

- KPNO Mayall 4m slit-covering echelle spectra
 - taken on Jun 1999 (PI: You-Hua Chu); covering Hα and [N II] λλ6548,6583;
 - slit-width: 1.4"; instrumental FWHM=14.6 km/s; *R*~80,000

Analysis of the KPNO echelle spectra

- Extract spectra from every 1.14"x1.4" apertures;
- Fit the Hα profiles with multiple Gaussians;
- Add extra components by F-test (with p-value=10⁻³).

Interpretation of the Gaussian fitting

 Kinematics of the ionized gas: modest blueshift at the southwestern outskirt of H1105 and NGC 5471D

Interpretation of the Gaussian fitting

• Kinetic energy of turbulent motion: $E_k = \frac{3}{2} \Sigma_{\text{H II}} (\sigma_{\text{obs}}^2 - \sigma_{\text{instr}}^2 - \sigma_{\text{th}}^2)$

- Geometry
 - NGC 5461:

broken power-law

NGC 5471:
uniform line-of sight distribution
length of 5 pc

Interpretation of the Gaussian fitting

• Kinetic energy of turbulent motion: $E_k = \frac{3}{2} \Sigma_{\text{H II}} (\sigma_{\text{obs}}^2 - \sigma_{\text{instr}}^2 - \sigma_{\text{th}}^2)$

- Geometry
 - NGC 5461:

broken power-law

+ NGC 5471:

uniform line-of-

sight distribution

length of 5 pc

10 ⁴ K ionized gas	NGC 5461	NGC 5471
Mass (10 ⁶ M _{sun})	2.1	1.6
<i>E</i> k,turb (10 ⁵² ergs)	5.7	3.6

 Kinetic energy of the turbulent neutral atomic gas: derived from H I 21-cm data cube in the THINGS survey

$$E_{k} = \frac{3}{2} \Sigma_{\mathrm{H\,I}} (\sigma_{\mathrm{obs}}^{2} - \sigma_{\mathrm{out,\,turb}}^{2})$$

 Kinetic energy of the turbulent neutral atomic gas: derived from H I 21-cm data cube in the THINGS survey

$$E_{k} = \frac{3}{2} \Sigma_{\mathrm{H\,I}} (\sigma_{\mathrm{obs}}^{2} - \sigma_{\mathrm{out,\,turb}}^{2})$$

HIgas NGC 5461 NGC 5471

Mass (10 ⁶ M _{sun})	35	15
<i>E</i> _{k,turb} (10 ⁵² ergs)	4.9	0.6

 Thermal energy of 10⁶ K hot gas in the core of H1105: derived from *Chandra* observation

 Thermal energy of 10⁶ hot gas in the core of H1105: derived from *Chandra* observation

 Thermal energy of 10⁶ hot gas in the core of H1105: derived from *Chandra* observation

Census of mechanical energy in multi-phase gas

	10 ⁶ K hot gas		10 ⁴ K ionized gas		neutral atomic gas	
	Mass (10 ⁶ M _{sun})	<i>E</i> _{th} (10 ⁵² ergs)	Mass (10 ⁶ M _{sun})	<i>E</i> k (10 ⁵² ergs)	Mass (10 ⁶ M _{sun})	<i>E</i> k (10 ⁵² ergs)
NGC 5461	0.1	19	2.1	5.7	35	4.9
NGC 5471			1.6	3.6	15	0.6

*E*mech from identified clusters: (0.3-30)x10⁵² ergs v.s.
~30x10⁵² ergs in multi-phase medium

- ★ E_{mech} from identified clusters: (0.3-30)x10⁵² ergs
- massive clusters are crowded by star clouds

- ★ E_{mech} from identified clusters: (0.3-30)x10⁵² ergs
- massive clusters are crowded by star clouds
- Hα bubble around the central three, like 30 Doradus

Summary

- We analyzed multi-band observations toward multiphase gas in NGC 5461 and NGC 5471, and found
 - In NGC 5471B, ionized gas shows kinematic features of expanding shell and outflow;
 - At the southwestern outskirt of H1105 and NGC 5471D, the ionized gas is modest blueshifted consistent with modest evolved populations in those portions;
 - An investigation of feedback efficiency requires more information on the stellar contents.

Thank you for your attention!

Examples of SED fitting

Census of mechanical energy in multi-phase gas

	hot gas	lonized gas	neutral gas	mechanical energy
	<i>E</i> _{th} (10 ⁵² erg s ⁻¹)	<i>E</i> k (10 ⁵² erg s ⁻¹)	<i>E</i> k (10 ⁵² erg s ⁻¹)	<i>E</i> _{mech} (10 ⁵² erg s ⁻¹)
NGC 5461	19	5.7	4.9	242
NGC 5471		3.6	0.6	75

- ~10% v.s. superbubble model's prediction (Weaver+1977): 55/77
- much more kinetic energy could be reserved in tenuous gas (e.g., Wood+2015): still too low
- low feedback efficiency!

	Reg-1	Reg-2	knot-A	knot-D
Age (Myr)	2.74 (0.07)	4.71 (0.17)	2.94 (0.04)	4.03 (0.14)
Av	1.04 (0.20)	0.57 (0.07)	0.28 (0.06)	<0.20