FERMI-LAT OBSERVATIONS OF MICROQUASARS

A BODAGHEE ¹ JA TOMSICK ¹ J RODRIGUEZ ²

¹ UC BERKELEY
² CEA SACLAY

CYGNUS X-3: THE FIRST GAMMA-RAY MICROQUASAR

Fermi-LAT collab. (S. Corbel) 2009 Science 326 1512

sequence: gamma-rays then radio (lag: 5±7 days)

 \Rightarrow likely mechanism, IC: UV photons from WR star upscatter off of relativistic electrons in the jet

CYGNUS X-3: GAMMA-RAY FLARE OF MAY 2010

AGILE: Bulgarelli et al. 2010 ATel 2609, 2645 Fermi: Corbel et al. 2010 ATel 2611, 2646

Williams et al. 2011 ApJL 733 20

CYGNUS X-3: GAMMA-RAY FLARE OF MAY 2010

radio flare precedes gamma-ray emission: IC probably not the only mechanism ... could be ejection event w/ shock and/or hadronic processes: p + $\gamma \rightarrow \pi^0$ + ... $\rightarrow 2\gamma$

Williams et al. 2011 ApJL 733 20

CYGNUS X-3: GAMMA-RAY FLARE OF MARCH 2011

Corbel et al. 2012 MNRAS 421 2947

CYGNUS X-3: GAMMA-RAY FLARE OF MARCH 2011

Corbel et al. 2012 MNRAS 421 2947

FERMI-LAT OBSERVATIONS OF MICROQUASARS

100 MeV – 10 GeV all data within 20° of each target (p7v9r27) from aug 2008 until may 2012

timescale: 0.1, 1, and 10 days spectral model: 2FGL (+diffuse emission) refined with binned likelihood analysis of full data set

1) wide-aperture unbinned likelihood analysis \rightarrow Test Statistic (TS) 2) aperture-restricted event weighting \rightarrow Probability (P)

name	type		b	Po (days)
4U 1630–47	LMXB	336.9	+0.3	133 3
4U 1957+11	LMXB	51.3	-9.3	0.38823(2)
Cygnus X-1	HMXB	71.3	+3.1	5.6008(7)
Cygnus X-3	HMXB	79.8	+0.7	0.1996907(7
GRO J1655–40	LMXB	355.0	+2.5	2.621(7)
GRS 1758–258	LMXB	4.5	-1.4	18.973(7)
GRS 1915+105	LMXB	45.4	-0.2 👕	33.5(1.5)
GX 339–4	LMXB	338.9	-4.3	1.7563(3)
LS I+61 303	HMXB	135.6	+1.1	26.496(3)
SAX J1819.3–2525	HMXB	6.8	-4.8	2.8019(2)
SS 433	HMXB	39.7	-2.2	13.080(3)
SWIFT J1753.5–0127	LMXB	24.9	+12.2	

FERMI-LAT OBSERVATIONS OF MICROQUASARS

100 MeV – 10 GeV all data within 20° of each target (p7v9r27) from aug 2008 until may 2012

timescale: 0.1, 1, and 10 days spectral model: 2FGL (+diffuse emission) refined with binned likelihood analysis of full data set

wide-aperture unbinned likelihood analysis → Test Statistic (TS)
 aperture-restricted event weighting → Probability (P)

name	type		b	Po (days)
4U 1630–47	LMXB	336.9	+0.3	14 3 3
4U 1957+11	LMXB	51.3	-9.3	0.38823(2)
Cygnus X-1	HMXB	71.3	+3.1	5.6008(7)
Cygnus X-3	HMXB	79.8	+0.7	0.1996907(7
GRO J1655–40	LMXB	355.0	+2.5	2.621(7)
GRS 1758–258	LMXB	4.5	-1.4	18.973(7)
GRS 1915+105	LMXB	45.4	-0.2	33.5(1.5)
GX 339–4	LMXB	338.9	-4.3	1.7563(3)
LS I+61 303	HMXB	135.6	+1.1	26.496(3)
SAX J1819.3–2525	HMXB	6.8	-4.8	2.8019(2)
SS 433	HMXB	39.7	-2.2	13.080(3)
SWIFT J1753.5–0127	LMXB	24.9	+12.2	

CYGNUS X-1: PHOTON COUNTS MAP (0.1-10 GEV)

CYGNUS X-1: GAMMA-RAY LIGHT CURVE

CYGNUS X-1: X-RAY/GAMMA-RAY LIGHT CURVE

CYGNUS X-1: GAMMA-RAY PERIODICITY SEARCH ($P_0 = 5.6$ D)

GRS 1915+105: PHOTON COUNTS MAP (0.1-10 GEV)

GRS 1915+105: GAMMA-RAY LIGHT CURVE

GRS 1915+105: X-RAY/GAMMA-RAY LIGHT CURVE

GRS 1915+105: RESIDUAL MAP FOR MJD 55110 (TS \sim 14)

0.0

GRS 1915+105: PERIODICITY SEARCH ($P_{0} = 33.5$ D)

detection of a 53-d period: possible signature of a new gamma-ray binary?

GRS 1915+105: PERIODICITY SEARCH ($P_0 = 33.5 \text{ d}$)

ONGOING WORK & OUTLOOK

EXTEND THIS ANALYSIS TO OTHER MICROQUASARS TO SEARCH FOR GAMMA-RAY EMISSION (TRANSIENT AND/OR PERIODIC)

IMPLEMENT EVENT WEIGHTING FOR SHORT TIME BINS

FERMI OBSERVATIONS OF MICROQUASARS CAN SHED LIGHT ON THE ROLE OF RELATIVISTIC JETS IN PRODUCING GAMMA-RAY EMISSION FROM ACCRETING COMPACT OBJECTS

BODAGHEE ET AL. 2012D IN PREP.