Black hole spin evolution and magnetic field decay

Anna Chashkina and Pavel Abolmasov

Sternberg Astronomical Institute

Outline

- Introduction
- Accretion on a black hole
- Electromagnetic processes
- Standard disk
- ADAF
- Magnetic field decay
- Conclusions
- Observational tests
- Plans for the future

No-hair theorem: (John Archibald Weeller)

 $a = \frac{c}{G} \frac{J}{M^2}$ (J - the total angular momentum of the BH).

According to black hole membrane paradigm the surface of black hole has angular frequency $\Omega \mu = \frac{a}{2} \frac{c}{2}$

$$\Omega_H = \frac{a}{2} \frac{c}{R_H}$$

 $(R_H$ - the horizon radius of the BH).

Spin evolution of black hole:

$$\frac{da}{d\ln M} = \frac{1}{M} \frac{L^+(a,M)}{E^+(a)} - 2a$$

here E^+ is specific energy at infinity, L^+ is specific angular momentum.

$$a = \left(\frac{2}{3}\right)^{1/2} \frac{M_i}{M} \left[4 - \left(\frac{18M_i^2}{M^2} - 2\right)^{1/2} \right]$$
(Bardoon, 1970, and Thomas, 1974)

Sac

Black-hole as electric chain

$$\frac{dE}{dt} = \frac{1}{8c} \Omega_F (\Omega_H - \Omega_F) R_H^4 B_p^2$$
$$\frac{dJ}{dt} = \frac{1}{8c} (\Omega_H - \Omega_F) R_H^4 B_p^2$$
$$\frac{da}{dt} = \frac{c}{G} \left(\frac{1}{M^2} \frac{dJ}{dt} - \frac{2aG}{Mc} \frac{dM}{dt} \right)$$

Sac

We assume that magnetic field is equipartition with gas+radiation pressure as $\frac{B_{\rho}^2}{8\pi}=\frac{1}{\beta}$

Electro-magnetic processes

 $\Omega_F = \Omega_H/2$

(Blandford, Znajek, 1977)

 $\Omega_F = \Omega_K$

(Zeldovich, Shvartsman, 1970)

Sac

Standard disk

$$\frac{da}{dt} = \frac{\mu \dot{M}}{M^2} (j^+ - 2aM) - \frac{c}{G} \left(\frac{1}{M^2} \frac{dJ}{dt} - \frac{2aG}{Mc} \frac{dM}{dt} \right)$$

Rotational evolution of standard black hole ($M_{in} = 10^6 \odot M$, $\dot{M} = 0.4 \dot{M}_{edd}$). Dotted line is matter accretion contribution, red line is Blandford-Znajek and cyan line is DML.

Sac

$$\dot{M}/\dot{M}_{edd} < 10^{-2}$$

The main differences from the Shakura-Sunyaev disk:

- Non Keplerian velosity;
- Geometry thick, opticaly thin.

(Narayan, Yi, 1994)

Rotational evolution of standard black hole ($M_{in} = 10^6 M_{\odot}$, $\dot{M} = 10^{-2} \dot{M}_{edd}$). Dashed line is matter accretion contribution in the standard disk and dotted line is matter accretion contribution in ADAF case.

$$\dot{M}/\dot{M}_{edd} < 10^{-2}$$

The main differences from the Shakura-Sunyaev disk:

- Non Keplerian velosity;
- Geometry thick, opticaly thin.

```
(Narayan, Yi, 1994)
```


Rotational evolution of standard black hole($M_{in} = 10^6 M_{\odot}$, $\dot{M} = 10^{-2} \dot{M}_{edd}$). Dashed line is matter accretion contribution in the standard disk, dotted line is matter accretion contribution in ADAF case, cyan line is ADAF DML red line is ADAF Blandford-Znajek.

Abnout Ohm decay.

$$L_{J} = \left(\frac{\Omega_{H}}{\Omega_{F}} - 1\right) \frac{dE}{dt}$$

$$\frac{B^{2}}{8\pi} \cdot v_{r} \cdot 2\pi R_{in} \cdot 2h \ge L_{J}$$

$$v_{min} = \frac{8\pi L_{J}}{B^{2}2\pi R_{in}2h}$$

Changes in the a(t), M(t) in ADAF DML case:

$$\frac{da}{dt} = \frac{\mu M}{M^2} (j^+ - 2aM) - \frac{c}{G} \left(\frac{1}{M^2} \frac{dJ}{dt} - \frac{2aG}{Mc} \frac{dM}{dt} \right) \exp(-v_{min}/v_r)$$

(ロト 《四下 《注下 《注下 》注: のへで

- Depending on the prevailing accretion regime and mass accretion rate black hole may be spun up to different values of Kerr parameter between \sim 0.2 and \sim 0.998
- Thick disc causes efficient spin-down
- Magnetic field decay is important influence on the efficiency of direct magnetic link

Observational tests

- 1. X-ray continuum fitting method. (Narayan, McClintock, 2012)
 - X-ray Nova A0620: $a = 0.12 \pm 0.19$, $M/M_{\odot} = 6.61 \pm 0.25$
 - X-ray Nova 4U 1543-47: $a = 0.8 \pm 0.1$, $M/M \odot = 9.4 \pm 1.0$
 - Microquasars XTE J1550-564: a = 0.34 ± 0.24, M/M⊙ = 9.10 ± 0.61
 - Microquasars GRO J1655-40: $a = 0.7 \pm 0.1$, $M/M_{\odot} = 6.30 \pm 0.27$
 - Microquasars GRS 1915+105: $a = 0.975 \pm 0.025$, $M/M_{\odot} = 14.0 \pm 4.4$
- 2. Light curve fitting. (Suleimanov, Lipunova, Shakura, 2008)
 - X-ray Nova A0620: $a = 0.12 \pm 0.19$, $M/M_{\odot} = 6.61 \pm 0.25$
 - X-ray Nova GRS 1124-68: *a* ≤ 0.4

Observational tests

ロト (個) (注) (注) (注) のへで

Plans for the future

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plans for the future

Nonstationary accretion

Sac

э