Extremely Faint & Incredibly Close: the Physics of Accretion onto Sgr A*

Jason Dexter TAC/LBL Postdoctoral Fellow UC Berkeley

With Eric Agol, Chris Fragile, and Jonathan McKinney

Standard Accretion Theory

Standard Accretion Theory

Galactic Center Black Hole

- S2 orbit: $M_{BH} \approx 4 \times 10^6 M_{sun}$
- Proper motion: Sgr A* is > $4 \times 10^5 M_{sun}$ (Reid & Brunthalter 2004)
- Fed by stellar winds (dM/dt ~ 10⁻³ M_{sun} / yr)

Sagittarius A* SED

Radio: Balick & Brown 1974

mm: Zylka & Mezger 1988

NIR: Genzel+2003; Ghez+2004

X-ray: Baganoff +2001,2003

Sgr A* Feeding

• L_X : T \approx few keV, n $\approx 10^2$ cm⁻³

• RM: (Marrone et al. 2007)

 $\dot{M}\simeq 10^{-9}r_{\rm NR}^{7/6}M_\odot {\rm yr}^{-1}$

• Most of the mass doesn't accrete!

 \odot yr

Sgr A* Size & Polarization

- 230 GHz brightness $temp: {}^{2}I_{\nu}$ $I_{b} = \frac{p: {}^{2}I_{\nu}}{2k\nu^{2}}$ $\simeq 6 \times 10^{10} \text{K}$
 - cf. $T_i \approx T_{vir} \approx 10^{12} \text{ K}$
- $\delta \theta \simeq 20$: for $\theta = 10^{3} B^{000} \pi$ $n < 10^{7} \beta^{1/3} cm^{-3}$ $B < 300 \beta^{-1/2} G$

Accretion Flow Models of Sgr A*

- Thin disk:
 - ruled out by T_b, MIR
 upper limits

- Spherical accretion / ADAF (Melia 1992, Narayan+1995):
 - $dM/dt \approx dM/dt_{Bondi}$
 - ruled out by T_b,
 polarization, RM
 (Quataert & Gruzinov 2000, Agol 2000)

Accretion Flow Models of Sgr A*

- ADAF/CDAF/ADIOS/ ... \rightarrow RIAF!
 - Need significant mass
 loss for RM
 - Need non-thermal efor polarization
- Also: Jet model (Falcke & Markoff 2000)

Stationary, no outflows, no B, no GR

Sagittarius A* SED

Non-thermal electrons far from BH

Thermal electrons at BH

Simultaneous IR/X-ray flares close to BH?

Millimeter VLBI of Sgr A*

Doeleman et al. (2009), Broderick et al. (2011)

Event Horizon Telescope
 (eventhorizontelescope.org, arXiv: 0906.3899)

6/20/12

Black Hole Universe 2012

Black Hole Images & Shadows

-20

x (µas)

0

20

40

Falcke, Melia & Agol (2000)

Bromley, Melia & Liu (2001) Black Hole Universe 2012 Sensitive to viewing geometry & details of emission region Need accurate theoretical predictions!

ightarrow

MO

GRMHD Simulations

- Ideal theoretical model:
 - Time-dependent (variability / flares)
 - Relativistic (images / BH shadow)
 - Magnetic fields (accretion / synchrotron)
- GRMHD simulations
 - Physical accretion theory
 - Time-dependent, fully relativistic
 - Limitations:
 - Numerical & difficult
 - Radiation & thermodynamics
 - Dynamic range & duration
 - Initial conditions

6/20/12

GRMHD Models of Sgr A*

- GRMHD great for Sgr A*
 - Insignificant cooling (Dibi+2012)
 - Synchrotron radiation near BH
- Not perfect...
 - Collisionless plasma (mfp = $10^4 R_s$)
 - No electrons
- Add radiation:
 - Scale dM/dt, constant T_i/T_e
 - Observables from ray tracing (Dexter & Agol 2009, Dexter 2011)

Applied Black Hole GRMHD

Sagittarius A* Disk Images

100x100 µas

Dexter et al. (2009, 2010)

Parameter Estimates

Black Hole Shadow

But Disk Is Likely Tilted...

- Drastic changes to dynamics! (Fragile et al. 2007-2009, Dexter & Fragile 2011)
- Unconstrained parameters
- Best fit images are still crescents, shadow still visible

Millimeter Variability

- Correlation with accretion rate
- Driven by magnetic turbulence
- Reproduce observed mm flares

Solid – 230 GHz (1.3mm) Dotted – 690 GHz (0.4mm)

Flux (Jy)

NIR Flares in Tilted Disks

IR/X-ray QPOs

Dolence et al. (2012)

Polarization

Shcherbakov et al. (2012)

Open Theoretical Questions

- Initial conditions at $r \approx 100 \text{ M}$ ightarrow
 - Tilt? H/R?
 - Magnetic flux? (Jon's talk)
 - Circularization radius?

- Thermal with $T_i/T_e(\mathbf{x})$?
- Power law tail?

(2011)

al. (2012)

M87 Jet Images

100x100 µas

Dexter, McKinney, Agol (2012)

The size of M87

Summary

 Sgr A* excellent lab for testing contemporary accretion theory

 GRMHD simulations provide good description of event-horizon-scale & timedomain observations

 Near future extremely promising (EHT, GRAVITY, Chandra XVP)

Gas Cloud

Gillessen et al. (2012)

• Arrives 2013!

 Accretion rate increase?

 X-rays from 1000 M?

