The broad iron K α line feature in Cygnus X-1 with XMM-Newton, RXTE and INTEGRAL

Refiz Duro

Thomas Dauser¹, Jörn Wilms¹, Victoria Grinberg¹, Ivica Miškovičová¹, Jérôme Rodriguez², Marion C. Bel³, John A. Tomsick⁴, Arash Bodaghee⁴, Michael A. Nowak⁵, Katja Pottschmidt⁶, Sonja Fritz¹, Eckhard Kendziorra⁷, Marcus G. F. Kirsch⁸, Christopher S. Reynolds⁹, Rüdiger Staubert⁷ ¹ ECAP, ² CEA, ³ ESA-ESOC, ⁴ SSL/UCBA, ⁵ MIT

⁶ CRESST/UMBC/NASA-GSFC, ⁷ IAAT, ⁸ ESO, ⁹ UMD

ECAP Dr.Karl-Remeis Sternwarte Bamberg, Germany

The result

Our data show:

Cygnus X-1 is a highly rotating black hole!

 $a \sim 0.9$

Reflection fitting method:

(Duro+ 2011,2012)

(Fabian+ 2012)

Continuum fitting method:

(Gou+ 2011)

Inclination: $i = 27^{\circ}$ Distance: d = 1.86 kpc Mass BH: $M_{\rm BH} = 14.8$ M $_{\odot}$

(Reid+ 2011) (Orosz+ 2011)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

Modified Timing mode:

(Kendziorra+ 2004)

- increase telemetry for EPIC-pn
- discard soft energy events (split events cause soft excess in the spectra)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn
 - discard soft energy events
 (split events cause soft excess in the spectra)

Vela X-1 (thick filter)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn

Vela X-1 (thick filter)

 discard soft energy events (split events cause soft excess in the spectra)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn
 - discard soft energy events
 (split events cause soft excess in the spectra)

Her X-1 (medium filter)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn
 - discard soft energy events
 (split events cause soft excess in the spectra)

Her X-1 (medium filter)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn
 - discard soft energy events
 (split events cause soft excess in the spectra)

Circinus X-1 (thin filter)

Fast modes and obstacles:

- Burst & Timing mode
- low S/N & telemetry limit \sim 450 c/s

Solution:

- Modified Timing mode: (Kendziorra+ 2004)
 - increase telemetry for EPIC-pn
 - discard soft energy events
 (split events cause soft excess in the spectra)

Circinus X-1 (thin filter)

Cygnus X-1 with RXTE All Sky Monitor in 2004

Cygnus X-1 is in a hard intermediate state.

Γ ~ 1.6

- ASM mapping (hardness-counts) (Grinberg+ 2012)
- radio emission during the observation

Lightcurves: EPIC-pn, PCA, HEXTE

Broad iron K α line feature in EPIC-pn

The broad iron ${\rm K}\alpha$ line feature in Cygnus X-1

Models

Models

Results for Coronal geometry:

The broad iron ${\rm K}\alpha$ line feature in Cygnus X-1

Results for Coronal geometry:

Line emissivity with $r^{-\epsilon}$ profile:

- broken power law $\varepsilon_{out}=3$ and $\varepsilon_{in}=free$
- single power law with $\epsilon=3$

Parameter	Obs1	Obs2	Obs3	Obs4
$\Gamma_{ m pl}$	1.748 ± 0.014	$1.600^{+0.022}_{-0.019}$	$1.614_{-0.013}^{+0.009}$	$1.587^{+0.016}_{-0.015}$
$E_{\mathrm{fold}} \; [\mathrm{keV}]$	177^{+14}_{-13}	170 ± 9	180^{+10}_{-9}	164^{+12}_{-10}
$\rm Fe/Fe_{\odot}$	$3.6^{+0.7}_{-0.4}$	$6.0^{+0.0}_{-1.7}$	$4.4^{+1.6}_{-1.0}$	$4.3^{+1.3}_{-0.8}$
$\epsilon_{ m in}$	$10.0^{+0.0}_{-3.0}$	$5.4^{+4.6}_{-0.7}$	$7.5^{+2.5}_{-3.1}$	10^{+0}_{-6}
$r_{\rm br}~[{\rm GMc^{-2}}]$	$3.38^{+0.27}_{-0.15}$	$4.0^{+0.7}_{-0.6}$	$3.3^{+0.7}_{-0.4}$	$3.31_{-0.24}^{+0.78}$
а	$0.856\substack{+0.026\\-0.020}$	$0.989\substack{+0.009\\-0.088}$	$0.91\substack{+0.05 \\ -0.07}$	0.86 ± 0.05
$i [\mathrm{deg}]$	$34.1_{-1.8}^{+2.4}$	28 ± 4	$30.2^{+1.6}_{-2.5}$	$32.0^{+2.8}_{-2.9}$
$\chi^2_{ m red}$	1.41	1.24	1.30	1.21

 χ^2 behaviour when changing spin a

χ^2 significance contours

Results for Lamp post geometry:

Results for Lamp post geometry:

Parameter	Obs1	Obs2	Obs3	Obs4
$\Gamma_{\rm pl}$	$1.746^{+0.015}_{-0.014}$	$1.618\substack{+0.018\\-0.017}$	$1.613\substack{+0.013\\-0.010}$	$1.591\substack{+0.014 \\ -0.020}$
E_{fold} [keV]	180^{+15}_{-16}	176^{+16}_{-15}	180^{+12}_{-10}	166^{+10}_{-12}
${\rm Fe}/{\rm Fe}_{\odot}$	3.8 ± 0.6	$3.5^{+0.9}_{-0.7}$	$4.0^{+0.8}_{-0.7}$	$3.9\substack{+0.9 \\ -0.8}$
$h \; [\mathrm{GM/c^2}]$	$3.00^{+0.23}_{-0.00}$	$3.00^{+0.22}_{-0.00}$	$3.20^{+0.62}_{-0.21}$	$3.0^{+0.9}_{-0.0}$
a	$0.99\substack{+0.00\\-0.11}$	$0.99\substack{+0.00\\-0.04}$	$0.995\substack{+0.004\\-0.074}$	$0.90\substack{+0.07 \\ -0.06}$
$i \; [deg]$	$36.4^{+1.4}_{-1.2}$	$33.1_{-2.2}^{+2.4}$	$33.6^{+1.9}_{-2.9}$	$35.0^{+1.6}_{-5.1}$
$\chi^2_{\rm red}$	1.46	1.29	1.32	1.22

χ^2 significance contours

Broad Fe K α line: summary

- 4 observations with XMM-Newton, RXTE & INTEGRAL
- hard intermediate state
- convolved reflection + cutoff power law
- successfully applied Corona and Lamp post geometry models

Broad Fe K α line: summary

- 4 observations with XMM-Newton, RXTE & INTEGRAL
- hard intermediate state
- convolved reflection + cutoff power law
- successfully applied Corona and Lamp post geometry models

Cygnus X-1 is spinning with $a \sim 0.9$

Broad Fe K α line: summary

- 4 observations with XMM-Newton, RXTE & INTEGRAL
- hard intermediate state
- convolved reflection + cutoff power law
- successfully applied Corona and Lamp post geometry models

Cygnus X-1 is spinning with $a \sim 0.9$

Agreement with Continuum-fitting method result by Gou+ 2011 & Reflection fitting method result by Fabian+ 2012

The gainshift in EPIC-pn from Chandra data

The broad iron ${\rm K}\alpha$ line feature in Cygnus X-1

The gainshift in EPIC-pn fitted with PCA

