The X-ray/UV absorber in NGC 4593

Jacobo Ebrero (SRON)

Jelle Kaastra (SRON) Jerry Kriss (STScI)

Black Hole Universe 2012, Bamberg, Germany

Netherlands Organisation for Scientific Research

Cosmic Feedback mechanisms

1. Radiation

- Huge bolometric output
- Geometry of the nucleus matters
- Heating, ionizing, accelerating...

2. Relativistic jets

- Carry mass, energy, momentum
- Source of high-energy cosmic rays?

3. Non-relativistic winds (outflows)

- Probably ubiquitous
- Important for coevolution of SMBH and host galaxy
- Kinetic energy and mass outflow rates uncertain

Cosmic Feedback mechanisms

1. Radiation

- Huge bolometric output
- Geometry of the nucleus matters
- Heating, ionizing, accelerating...

2. Relativistic jets

- Carry mass, energy, momentum
- Source of high-energy cosmic rays?

3 Non-relativistic winds (outflows)

- Probably ubiquitous
- Important for coevolution of SMBH and host galaxy
- Kinetic energy and mass outflow rates uncertain

Ionized gas: wide range of ionization phases

 $\xi = \mathbf{L} / \mathbf{n} \mathbf{R}^2$

Absorption troughs in the soft X-ray spectrum

Blue-shifted features: outflows

Ionized gas: wide range of ionization phases

Absorption troughs in the soft X-ray spectrum

Blue-shifted features: outflows

Ionized gas: wide range of ionization phases

Observed

Absorption troughs in the soft X-ray spectrum

Blue-shifted features: outflows

600 ks XMM-Newton RGS Mrk 509

Detmers et al. (2011)

600 ks XMM-Newton RGS Mrk 509

Detmers et al. (2011)

600 ks XMM-Newton RGS Mrk 509

Detmers et al. (2011)

NGC 4593

- 2. Confirmed presence of intrinsic WA - Steenbrugge+03; McKernan+03
- 3. Confirmed presence of UV absorber - Ebrero+12, in prep.
- 4. Slow variability
 - Suitable for reverberation studies

NGC 4593

2. Confirmed presence of intrinsic WA - Steenbrugge+03; McKernan+03

3. Confirmed presence of UV absorber - Ebrero+12, in prep.

4. Slow variability

- Suitable for reverberation studies

X-ray absorption in NGC 4593

Chandra LETGS, 160 ks (Ebrero+12, in preparation)

X-ray absorption in NGC 4593

XMM-Newton RGS, 86 ks (Ebrero+12, in preparation)

Is the X-ray absorption variable?

X-ray warm absorber

RGS (2002) LETGS (2011)

Comp	$\log \xi$ (erg cm s ⁻¹	$\frac{\log N_{\rm H}}{(\rm cm^{-2})}$	v _{out} (km s ⁻¹)	logξ (erg cm s ⁻¹)	$\frac{\log N_{\rm H}}{(\rm cm^{-2})}$	v_{out} (km s ⁻¹)
A	1.0 ± 0.1	20.8±0.1	-320 ± 100	0.4 ± 0.4	20.0±0.5	-290 ± 200
B	2.6±0.1	21.6±0.1	-240±60	2.4±0.1	21.6±0.1	-670 ± 120

Ionizing flux higher by ~50% in 2002, hints of variability in the WA parameters

Is the X-ray absorption variable?

X-ray warm absorber

RGS (2002) LETGS (2011)

Comp	$\log \xi$ (erg cm s ⁻¹	$\frac{\log N_{\rm H}}{(\rm cm^{-2})}$	v_{out} (km s ⁻¹)	$\log \xi$ (erg cm s ⁻¹)	$\frac{\log N_{\rm H}}{(\rm cm^{-2})}$	v _{out} (km s ⁻¹)
A	1.0 ± 0.1	20.8±0.1	-320 ± 100	0.4 ± 0.4	20.0 ± 0.5	-290 ± 200
В	2.6±0.1	21.6±0.1	-240 ± 60	2.4±0.1	21.6±0.1	-670 ± 120

Ionizing flux higher by ~50% in 2002, hints of variability in the WA parameters

Constrain the location the component(s) via time-dependent recombination processes (Ebrero+12, in preparation).

UV absorption in NGC 4593

HST-STIS observation

4 orbits, E140M grating

Quasi-simultaneous with XMM-Newton

Unpublished data (!?)

Emission lines: Ly α , C IV, N V, Si IV

Foreground absorption: Several ISM components, Ly α IGM features Intrinsic absorption: 9 kinematic components (blueshifted)

UV absorption in NGC 4593

UV absorption in NGC 4593

Fit UV absorber in the same manner as the X-ray absorber

Transmission of a slab of material where all the $N_{\rm ion}$ are linked through a photoionization balance model (CLOUDY)

Fit UV absorber in the same manner as the X-ray absorber

Transmission of a slab of material where all the $N_{\rm ion}$ are linked through a photoionization balance model (CLOUDY)

HST-STIS (2002)

log ξ	v_{out}		
$(erg cm s^{-1})$	$(\rm km \ s^{-1})$		
-0.3 ± 0.1	-76±5		
0.4 ± 0.1	-259±5		
1.7 ± 0.9	-428±5		
0.3 ± 0.1	-488 ± 5		
0.2±0.1	-803 ± 5		
0.3 ± 0.1	-1276±7		
	$log \xi (erg cm s-1)-0.3 ± 0.10.4 ± 0.11.7 ± 0.90.3 ± 0.10.2 ± 0.10.3 ± 0.1$		

Fit UV absorber in the same manner as the X-ray absorber

Transmission of a slab of material where all the $N_{\rm ion}$ are linked through a photoionization balance model (CLOUDY)

HST-STIS (2002)

Comp	$\log \xi$ (erg cm s ⁻¹)	v_{out} (km s ⁻¹)
-		20 . 5
Ţ	-0.3 ± 0.1	-'76 ± 5
2	0.4 ± 0.1	-259 ± 5
3	1.7 ± 0.9	-428 ± 5
4	0.3 ± 0.1	-488 ± 5
5	0.2 ± 0.1	-803 ± 5
6	0.3 ± 0.1	-1276 ± 7

Fit UV absorber in the same manner as the X-ray absorber

Transmission of a slab of material where all the $N_{\rm ion}$ are linked through a photoionization balance model (CLOUDY)

HST-STIS (2002)

Comp	logξ (erg cm s ⁻¹)	v _{out} (km s ⁻¹)
1	-0.3 ± 0.1	-76 ± 5
ຂ	0.4 ± 0.1	-259 ± 5
3	1.7 ± 0.9	-428 ± 5
4	0.3 ± 0.1	-488 ± 5
5	0.2 ± 0.1	-803 ± 5
6	0.3 ± 0.1	-1276 ± 7

X-ray component B is too ionized to produce significant UV absorption

The predicted N(CIV) and N(NV) from X-ray component A match those measured in the UV for components 2 - 4

Fit UV absorber in the same manner as the X-ray absorber

Transmission of a slab of material where all the $N_{\rm ion}$ are linked through a photoionization balance model (CLOUDY)

HST-STIS (2002)

Comp	$\log \xi$	Vout
	(erg cm s ⁻)	(KM S ⁻¹)
1	-0.3 ± 0.1	-76 ± 5
2	0.4 ± 0.1	-259 ± 5
3	1.7 ± 0.9	-428 ± 5
4	0.3 ± 0.1	-488 ± 5
5	0.2 ± 0.1	-803 ± 5
6	0.3 ± 0.1	-1276 ± 7

X-ray component B is too ionized to produce significant UV absorption

The predicted N(CIV) and N(NV) from X-ray component A match those measured in the UV for components 2 - 4

The same gas is likely producing the UV and low ionization X-ray absorption

Can be done using dynamical arguments and some reasonable assumptions

 $N_{\rm H} = C_{\rm V} n R \implies R < L C_{\rm V} / N_{\rm H} \xi$

Can be done using dynamical arguments and some reasonable assumptions

 $N_{\rm H} = C_{\rm V} n R \implies R < L C_{\rm V} / N_{\rm H} \xi$

R_A < 5 рс **R**_B < 0.04 рс

Can be done using dynamical arguments and some reasonable assumptions

 $N_{\rm H} = C_{\rm V} n R \implies R < L C_{\rm V} / N_{\rm H} \xi$

R_A < 5 pc R_B < 0.04 pc

... and the energetics and feedback

Total mass outflow rate ~ 0.01 $M_{\odot}~yr^{\text{-}1}$ Accretion rate ~ 0.065 $M_{\odot}~yr^{\text{-}1}$

 $L_{\rm K} \thicksim 0.0002\% \ L_{\rm bol}$

Can be done using dynamical arguments and some reasonable assumptions

 $N_{\rm H} = C_{\rm V} n R \implies R < L C_{\rm V} / N_{\rm H} \xi$

R_A < 5 pc R_B < 0.04 pc

... and the energetics and feedback

Total mass outflow rate ~ 0.01 $M_{\odot}~yr^{-1}$ Accretion rate ~ 0.065 $M_{\odot}~yr^{-1}$

 $L_{\rm K} \thicksim 0.0002\% \ L_{\rm bol}$

Feedback models show that between 0.5% (Hopkins & Elvis 2010) and 5% (Di Matteo+05) must be fed back to the medium to alter the ISM

 10^{3} NGC 3516 Ark 564 NGC 459 Mkn 509 Ark 564 IRAS 13349+2438 NCG-6 MR2251-178 NGC 5548 NGC 5548 MR2251-178 NOC 3783 NGC 7469 NGC 4051 NGC 4593 10^{1} GC 3783 NGC 3783 MCG-6-30-15 Log R/R NGC 55 10^{-1} 10⁻³ PG0844+349 $\mathbf{R} = \mathbf{R}_{torus}$ PG1211+143 PG1211+143 10⁻⁵ R max R R^{min}R BLR 10⁻⁷ 5 10 15 20 0

Warm absorber phase

Black Hole Universe 2012, Bamberg, Germany

15

Blustin et al. (2005)

 10^{3} NGC 3516 Ark 564 NGC 459 Mkn 509 Ark 564 IRAS 13349+2438 NCG-6 MR2251-178 NGC 5548 NGC 5548 MR2251-178 NOC 3783 NGC 7469 NGC 4051 NGC 4593 10^{1} GC 3783 NGC 3783 MCG-6-30-15 Log R/R NGC 55 10^{-1} 10⁻³ PG0844+349 $\mathbf{R} = \mathbf{R}_{torus}$ PG1211+143 PG1211+143 10⁻⁵ R max R $R = R_{BLR}$ **Disk wind?** 10⁻⁷ 5 10 15 20 0

Warm absorber phase

Black Hole Universe 2012, Bamberg, Germany

Blustin et al. (2005)

Warm absorber phase

Warm absorber phase

Warm absorber phase

Warm absorber phase

Warm absorber phase

Summary

- NGC 4593 shows a two-phase WA in its X-ray spectra
- The low ionization component may be responding to **variations** in the incident ionizing flux
- Nine kinematic components are seen in the UV absorption spectrum
- At least 3 of them likely originate in the **same gas** that produces the low ionisation X-ray absorption
- This component is consistent with thermally driven winds from the **torus**, whereas the high ionization component is located at distances consistent with the **BLR**
- Their total contribution to AGN feedback processes is **negligible**

