

A UNIQUE TEST FOR A RELATIVISTIC PRECESSION ORIGIN OF THE LOW FREQUENCY QPO IN

Adam Ingram, Chris Done, Luigi Stella, Sergio Campana, Michiel van der Klis, P Chris Fragile

BLACK HOLE UNIVERSE ZØ1Z

BAMBERG, GERMANY, 18–22 JUNE 2012 Talk - 19th June 2012

 \land

()

()

Durham Truncated disk model

 $\mathbf{\mathbf{x}}$

University

So can we explain the **QPO** with the truncated disk model?

- Asymmetric potential => precession of particle orbits
 - ...Lense-Thirring precession

Stella & Vietri 1998; Markovic' & Lamb 1998

m = 1 HFGM Mode Frequency = 29 Hz Growth Rate = -0.6 Hz Q = 48 • Asymmetric potential => precession of particle orbits

...Lense-Thirring precession

Markovic´, Lamb, Duez, Engelhard, Fregeau & Huffenberger

- QPO is observed in the Comptonized tail
- Need a model that ties the QPO to the tail

Lense-Thirring precession

Fragile et al 2007

Testing precession – phase behavior of the QPO

dimmest

Emission from side of disc coming towards us:

- Doppler blue shifted
- Beamed from length contraction
- Time dilation as fast moving (SR)
- Gravitational red shift (GR)

Fe Kα line from irradiated disk should be broad and skewed

Doppler boosting and relativistic effects smear and broaden the line

Doppler boosting and relativistic effects smear and broaden the line

- 2-20 keV light curve of this model
- Apply a flux selection to find the QPO peak and trough
- The rising section will have maximum blue shift
- The falling section will have maximum red shift

- Plot the spectrum for each of the 4 phase bins
- Black: peak
- Red: fall
- Green: trough
- Blue: rise
- Ratio to a Γ=1.6 power law

- Lense-Thirring precession model can predict QPO frequencies for black holes as a class
- Precession causes a rotating illumination pattern which causes the iron line to rock between red and blue shift
- Reddest spectrum is the fall (after peak) and bluest spectrum is the rise (after trough)
- It may be possible to observe this with long exposures on current instruments but LOFT will *revolutionize* the field!

- Take difference spectrum of (blue rise - red fall)
- For r_o=60, get 'red dip' and 'blue trough'
- For r_o=10, no red dip due to strong Doppler boosting in the inner regions
- => Potentially a robust diagnostic for disc truncation

Broadband noise

Durham University Propagating fluctuations

This gives the noise spectrum EMMITED at each annulus

Lyubarskii 1997; Arevalo & Uttley 2006, Kotov et al 2001

 \land

Lense-Thirring precession

Lense-Thirring precession

