X-ray Polarimetry Observations of Black Holes in X-ray Binaries and Tests of General Relativity

Henric Krawczynski, June 19, 2012

Plan of talk:
(1) Two experiments: *GEMS & X-Calibur*.
(2) Tests of General Relativity with X-ray

Polarimetry [ApJ, in press, arXiv:1205.7063].

Soft X-ray Polarimetry with GEMS (Gravity and Extreme Magnetism SMEX)

GEMS:

- Bandpass: 2-10 keV (student exp.: 0.5 keV)I
- 10⁶ s observation of 1 mCrab source: ~2% MDP.
- Cancelled on June 7, 2012.

Soft X-ray Polarimetry with GEMS

Mirrors:

- Conical segments, F=4.5m.
- Collection area of 2 mirror assemblies: A_{eff} ~950 cm² at 2 keV.

Two **Photoelectric Effect Polarimeters**, each:

- 4 Time Projection Chambers.
- 30 cm demethyl ether at 0.25 atm.
- 99% absorption at 2 keV, 10% at 8 keV.
- μ ~ 0.2 ... 0.6.

(Black et al. 2010)

Tracking of Photo-Electrons

Present technology: high efficiency **or** imaging.

Observation plan:

- X-ray binaries (0.8 Msec): Cyg XI, GRS 1915+105, LMC X-3, 1E1740.7-2942+ToO.
- AGNs (4.9 Msec): Cen A, MCG 6-30-15, NGC 5548, 3C271, NGC4151, NGC1068.
- Blazars (0.8 Msec): Mrk 421, IES 1959+650, PKS 2155-314, Mrk 501.

Hard X-ray Polarimetry with X-Calibur

Compton Polarimeter:

- Balloon: 25 keV 70 keV,
- Satellite: 5 keV 100 keV.
- One-day balloon flight from Fort Sumner (NM) in Fall 2013: Crab, Cyg X-1, GRS 1915+105, Her X-1 (4-10% MDP), Mrk 421 (36% MDP).
- Longer balloon flights 2015 & 2016 (with bigger mirror?).

InFOCµS gondola with 8m optical bench (Tueller et al., NASA GSFC)

Hard X-ray Polarimetry with X-Calibur

255 shell Al mirror with 50 cm² area at 30 keV (Pt/C coating).

Nagoya Univ.

Rotating Compton Polarimeter.

Hard X-ray Polarimetry with X-Calibur

X-Calibur Test Results

Energy spectrum:

Spectral Fit to Thermal State Data

Gou et al. 2011:

Black Hole	<i>a</i> *	Reference
A0620–00 XTE J1550–564 M33 X-7 LMC X-1	$\begin{array}{c} 0.12\pm0.19\\ 0.34^{+0.20}_{-0.28}\\ 0.84\pm0.05\\ 0.92^{+0.05}_{-0.07}\end{array}$	Gou et al. (2010) Steiner et al. (2010b) Liu et al. (2008, 2010) Gou et al. (2009)

Kulkarni et al. 2011

X-ray polarimetry adds additional observables:

- Test Accretion Disk Models.
- Test No-Hair Theorem of GR.
- Constrain corona geometry.

Test of General Relativity in Strong-Gravity Regime

Strong GR Tests:

- Imaging of SMBHs;
- Stars Orbiting SMBHs.
- Fe K- α line;
- X-ray polarization;
- Gravitational waves.

Probe GR With X-Ray Polarization?

Quantitative evaluation of effect of non-GR metrics:

- Based on phenomenological axially symmetric metrics proposed by Johannsen & Psaltis 2011 (metrics from alternative gravity theories: Yunes & Pretorius (2009), Konno et al. (2009), Pani et al. (2011).
- Parameters: M, a, ε_3 . Deviation from Kerr Metric: ε_3 .
- Calculate modified properties of accretion disk \rightarrow ray tracing \rightarrow predicted observational signatures. Model $M[M_{\odot}]$ $\dot{M}[10^{18}gs^{-1}]$

Kerr Metrics	Α	10	2.45	0	0
	В	10	1.7	0.5	0
	С	10	0.90	0.9	0
	D	10	0.53	0.99	0
Non-GR Metrics	Е	10	4.00	0.5	-30.6
	F	10	2.33	0.5	-5
	G	10	1.27	0.5	2.5
	Н	10	0.88	0.5	6.33
	Ι	10	1.88	0.99	-5
	J	10	1.49	0.99	-2.5

€3

Event Horizons in Boyer-Lindquist Coordinates

Numerical Simulations - Details

Stable Circular Orbits:

$$\left(\frac{dr}{d\tau}\right)^2 = 0 \quad \frac{d}{dr} \left(\frac{dr}{d\tau}\right)^2 = 0 \qquad ds^2 = -e^{2\nu} dt^2 + e^{2\psi} (d\phi - \omega dt)^2 + e^{2\mu} dr^2 + dz^2 p_{\theta} = p^{\theta} = 0 \qquad p^2 = -1 \qquad \qquad F(r) = \frac{\dot{M}_0}{4\pi} e^{-(\nu + \psi + \mu)} f(r) \Rightarrow \mathbf{p} \qquad \qquad f(r) \equiv \frac{-p^t_{,r}}{p_{\phi}} \int_{r_{\rm ISCO}}^r \frac{p_{\phi,r}}{p^t} dr$$

Page & Thorne (1994):

Thin disk, zero torque at ISCO (Shakura & Sunyaev, 1973, Novikov & Thorne, 1973, Page & Thorne, 1994):

 $\dot{M} \& \mathbf{p}(r) \implies F(r)$

F(r): energy dissipation in plasma frame.

Numerical Simulations - Details

Emission & scattering:

- Blackbody with "spectral hardening" by f=1.8;
- Initial polarization & polarization-change from scattering: Chandrasekhar (1960).
- Neglect Faraday rotation.

Parallel transport of **k** and **f** (4th Ord. Runge-Kutta):

$$\frac{d^2 x^{\mu}}{d\lambda'^2} = -\Gamma^{\mu}_{\ \sigma\nu} \frac{dx^{\sigma}}{d\lambda'} \frac{dx^{\nu}}{d\lambda'}$$
$$\frac{df^{\mu}}{d\lambda'} = -\Gamma^{\mu}_{\ \sigma\nu} f^{\sigma} \frac{dx^{\nu}}{d\lambda'}$$

Example photon trajectory:

$$k^2 = 0 \qquad f^2 = 1 \qquad \mathbf{k} \cdot \mathbf{f} = 0$$

$$\frac{dN}{dt\,dr\,d\phi} = \sqrt{-g_{tr\phi}} \frac{F}{\langle \hat{E} \rangle}$$

Results: Kerr Black Holes (a=0...0.99, $\varepsilon_3=0$)

Larger BH-Spin: Increased Dominance of Scattered Emission.

Results: a=0.5, $\varepsilon_3 = -33$... 6.33

Results: a=0.99, $\varepsilon_3 = -5$, -2.5

Same angular size, different spin...

Results: Energy Spectra (Kerr, a=0...0.99)

Results - Energy Spectra (a=0.99, ε_3 = -5... 0)

→ Metric influences observational signatures.

Degeneracy between a and ε_3

a=0.9 a=0.5

$$\varepsilon_{3}=0$$
 $\varepsilon_{3}=6.3$
a=0 a=0.5
 $\varepsilon_{3}=0$ $\varepsilon_{3}=-5$

Results - Energy Spectra: GR vs. non-GR

Summary: X-Ray Polarimetric Studies of Black Holes

High-efficiency X-ray polarimeters:

- GEMS 2-10 keV polarimeter: not confirmed.
- X-Calibur 25-60 keV: first flight in 2013.
- Other experiments: ASTRO-H, Pogo, GRAPE, ...

X-Ray Polarimetric Observations of Black Holes in X-ray Binaries:

- Access B-field of accretion disks (Davis et al. 2009).
- Limited sensitivity to underlying spacetime (this work); similar for
 Fe K-alpha line (Johannsen & Psaltis, 2012) → time resolved studies?

X-Calibur co-workers at Wash. Univ.:

