

Super-Eddington Accreting Black Hole Systems

David L. Meier Jet Propulsion Laboratory California Institute of Technology

Bamberg Black Hole Workshop 19 June, 2012

Mast Deployment Scheduled for 21 June; image formation and adjustments to follow

New Book (Springer-Praxis) Black Hole Astrophysics: The Engine Paradigm

- Part I: Observations of Black Hole Engines
 - Recognizing Black Holes
 - Macroquasars
 - Microquasars
 - Miniquasars
- Part II: Physics of Black Hole Engines
 - Review of Newtonian Mechanics
 - Special Relativity
 - General Relativity and Black Holes
 - Gravitational Waves and Collapse
 - Nuts & Bolts of the Black Hole Engine: General Relativistic Mechanics
- Part III: Astrophysics of Black Hole Engines
 - Assembling the Engine Block: Black Hole Formation
 - Fueling and Carburetion
 - The Combustion Chamber: Spherical and Disk Accretion
 - The Thermal Exhaust System: Radiation- and Thermally Driven Winds & Jets
 - The Non-Thermal Exhaust System I. Rotating Magnetospheres
 - The Non-Thermal Exhaust System II. Magnetic Winds & Jets
 - Putting it all Together: Black Hole Engines of All Sizes
- Seven Appendices (GR kinetic theory/MHD, stellar structure, FFDE, stationary jet MHD)

NOTES:

950 pages; 204 figs; 640 refs.
Mid-level:

Late undergrad, early grad
Observers, PhD engineers
Budding theorists

Not for professional theorists (maybe a little)
Not for the layperson
Available mid-July, 2012 (<1 month delay)
10% discount for meeting attendees

PRICES:

Amazon.com:	\$118.58 =	94€
BHU Flyer BP:	81 f = 1	00€
BHU Flyer (euro	o):	90€

What Does "Super-Eddington" Accretion Mean?

Super-Eddington accretion is DEFINED as $\dot{m} = \dot{M} / M_{Edd} > 1$

 $\dot{M}_{Edd} = 4 \pi GM / \kappa_{es} c \varepsilon$ and $\varepsilon \approx 0.1$ is the accretion efficiency.

But, super-Eddington accretion can drive strong winds that reduce \dot{m} . So, where in the accretion flow parameter \dot{m}

Answer: same as before, in the sub-Eddington portion of the disk

- In SS "Middle" region: \dot{m} is steady (and same outside that region)
- In SS "Inner" region: $\dot{m} = \langle \dot{M} / \dot{M}_{Edd} \rangle$ (may be unsteady) <u>The Shakura & Sunyaev "inner" region spherizes ($H \approx r$)</u>, at the "trapping radius":

BH Trapping Radius	
SS "Inner"	SS "Middle"
Super-Eddington Regio	on

$$r_t = \dot{m} (r_g / \varepsilon)$$

Inside r_{t} , the accretion rate may not be constant with radius

What Does "Super-Eddington" Accretion Mean (cont.)?

The Eddington-scaled luminosity $l \equiv L_{bol} / L_{edd}$ is NOT necessarily equal to \dot{m}

- For RIAFs $\dot{m} \ll 1$, $L_{bol} \propto \dot{m}^2 m$ and $l = \dot{m}^2 / \dot{m}_A$
- For thin disks $\dot{m} \le 1$, $L_{bol} \propto \dot{m} m$ and $l = \dot{m}$
- For SE flows $\dot{m} > 1$, $L_{bol} \propto m$ and $l \approx 1$

Eddington and Moderately Super-Eddington Accretion:

High-Luminosity X-ray Sources

"Slim" Disk Model for

Moderately Super-Eddington Accreting Black Holes

From an <u>accretion theory</u> point-of-view, the "slim" disk model* is the appropriate model for super-Eddington accretion –

at least for $1 < \dot{m} < \sim 10$ or so.

*Begelman & dlm (1982); Abramowicz et al. (1988); Chen et al. (1995)

Properties of "slim" disks:

- Geometrically thick $(H \sim r)$
- <u>Radiative inflow along surface</u>
- <u>Trapped, advective core</u> inflow (~ADAF; drags photons toward BH)
- Core inflow is convectively unstable (Begelman & dlm 1982)
- Possibility of significant outflow (~ADIOS)
- Possible models:
 - #1: ADIOS-like
 - #2: convective transport to radiative regions
 - #3: combination of #1 & #2

"Slim" Disk

radiative inflow

trapped inflow

SS "Inner"

dlm (1979)

Accretion Models for Steep Power-Law Sources

Slim Disk Models for the Source ESO 243-49 HLX-1

 $T_* = 0.2 \text{ keV}$

 $(4-6) \times 10^6 M_{\odot}$

 $5200 - 7800 M_{\odot}$

 $L_{bol} = 1.1 \times 10^{42} \text{ erg s}^{-1} = 10^{8.5} \text{ L}_{\odot}$

 $(0.6-5) \dot{M}_{Edd} = 10^{22-23} \text{ g s}^{-1}$

ESO 243-49 HLX-1 is a strong candidate for a Portegies Zwart & McMillan-type young cluster that forms an Intermediate Mass Black Hole

- Disk properties:
 - Thermal component temperature:
 - Bolometric luminosity:
- Cluster mass:
- Black hole mass from
 - Slim disk accretion models of L_{bol} and T_* : 8800 15,000 M_{\odot}
 - Magorrian relation for cluster mass:
- Black hole accretion rate from:
 - Slim disk accretion models of L_{bol} and T_* :
- Power law index poorly constrained:
 - Farrell *et al.* used $\Gamma = 2.1$
 - Easily could be an SPL source ($\Gamma > 2.4$)

BOTTOM LINE

Near- and moderately super-Eddington sources should have significant emission above 2 keV AND display a (possibly steep) power-law component that extends toward 10 keV and beyond.

Farrell et al. (2012)

<u>Highly Super-Eddington</u> Accreting Black Holes:

"Cygnus X-1s on Steroids"

Super-Eddington Wind Model for Highly Super-Eddington Accreting Black Holes

Unlike ADIOS winds, when a super-Eddington accretion flow produces outflow, it will be optically thick – VERY optically thick.

Under these conditions (e.g., $\dot{m} >> 10$ or so) for observations we can ignore the details of the accretion flow, deal just with the wind, and assume that the mass loss rate $\Delta \dot{m} \approx \dot{m}$.

Early history of super-Eddington winds:

- Shakura & Sunyaev (1973):
 - Constant-velocity wind model (not detailed enough for analyzing observations)
- dlm (1977, 1979, 1982a, b, c):
 - Accelerating, radiatively-driven wind
 - With sonic point, photosphere formation, etc.
 - Relative positions of various important radii affect wind dynamical and thermal properties:
 - Sonic points (gas pressure, radiation pressure)
 - "Adiabatic radius" (where outflow transitions from adiabatic to radiative)
 - Photosphere
 - Generated many very complicated sets of algebraic equations

Super-Eddington Wind Model for Highly Super-Eddington Accreting Black Holes (cont.)

The complex set of equations can be inverted into a fairly simple set, based on observed L_{bol} and T_* .

r_i	=	1.01×10^9	cm	$\alpha^{2/5}$	$m^{19/25}$	$T_{*6}^{-28/25}$
r_*	=	2.2×10^9	cm		$m^{3/5}$	$T_{*6}^{-17/10}$
r_c	=	1.43×10^9	cm	$\alpha^{-1/10}$	$m^{19/25}$	$T_{*6}^{-28/25}$
$r_{ m sc}$	=	1.36×10^{11}	\mathbf{cm}	$lpha^{1/10}$	$m^{16/25}$	$T_{*6}^{-42/25}$
V_{∞}	=	$3.7 imes 10^8$	${\rm cms^{-1}}$	$lpha^{3/10}$	$m^{3/25}$	$T_{*6}^{14/25}$

Properties of super-Eddington winds:

- L_{bol} remains near L_{edd} , regardless of \dot{m}
- Very extended: last scattering surface $r_{sc} > 100 r_i \approx r_t$
- Spectrum formed deep in wind: photosphere $r_* << r_{sc}$
- Photosphere can be below or above sonic point r_c
- However, lower \dot{m} produces hotter spectrum T_* (just like a classical nova)

BOTTOM LINE

Highly super-Eddington sources should be very cool $T_* = 1.1 \text{ keV } m_{10}^{-0.21} \dot{m}_{10}^{-0.89}$ with little or no emission above 1 - 2 keV. $m = \frac{L_*}{1.25 \times 10^{38} \,\mathrm{erg}\,\mathrm{s}^{-1}}$

$$\dot{m} = 1.22 \times 10^3 \, \alpha^{2/5} \, m^{-6/25} \, T_{*6}^{-28/25}$$

Super-Eddington wind model: $M = 25 M_{\odot}$ $\dot{M} = 2 \times 10^{21} \text{ g s}^{-1}$ $T_* = 0.17 \text{ keV}$ $V_{wind} = 2800 \text{ km s}^{-1}$

Super-Eddington Wind Models for Super-Soft ULX Sources

RZ2109

4000

Some well known super-soft ULXs:

- P098 in M101 (Pence *et al.* 2001; Mukai *et al.* 2003)
- N1 in M81 (Swartz *et al.* 2002)
- ULX in GC RZ 2109 in NGC 4472 (Zepf *et al.* 2008)
- SS 433 (?)

Basic properties of super-soft ULXs:

- $L_{bol} > 10^{39} \text{ erg s}^{-1}$
- $T_* < \sim 0.2 \text{ keV}$
- Little detectable emission above ~2 keV

Important properties of P098:

- Highly variable
- But variability is only in T_* (0.090 0.173 keV)
- L_{bol} remains constant at ~3 × 10³⁹ erg s⁻¹ (just like a classical nova)

Important properties of RZ 2109 ULX:

- $L_{bol} \sim 4 \times 10^{39} \text{ erg s}^{-1}$
- Estimated mass of BH ~ $(10 35) M_{\odot}$
- $V_{wind} \sim 2000 \text{ km s}^{-1}$

P098 spectral variability ...

... and light curves

6000

7000

5000

Super-Eddington Wind Model for ULX P098 in M101

We can use the previous set of equations to determine the following about P098 in M101, under the SE wind model:

- Mass of BH $\sim 25 M_{\odot}$
- Accretion rates of $(4-7) \times 10^{-5} M_{\odot}$ yr ⁻¹

Table 16.4: Models of P098 at two different color temperatures						
Parameter	Symbol		Cool spectrum		Warm spectrum	
Color temp.	T_*		$0.090{ m keV}$		$0.173{ m keV}$	
Accretion rate	\dot{m}		130		63	
Mass-loss rate	$\Delta \dot{M} pprox \dot{M}$		$4.6 imes 10^{21} { m g s^{-1}}$		$2.2 imes 10^{21}{ m gs^{-1}}$	
Injection radius	r_i		$27,000\mathrm{km}$		$13,000\mathrm{km}$	
Photosphere	r_*		$141,000\mathrm{km}$		$46,000\mathrm{km}$	
"Sonic" radius	r_c		$223,000\mathrm{km}$		$107,000\mathrm{km}$	
Scattersphere	$r_{ m sc}$		$7 imes 10^6{ m km}$		$2.2 imes 10^6 { m km}$	
Wind speed	V_{∞}	U	$1950{ m kms^{-1}}$		$2800\mathrm{kms^{-1}}$	

What kind of mass transfer could produce such high accretion rates?:

• Roche lobe overflow on a thermal time scale

$$\dot{M}_{\rm th \bullet}^{\star} \approx \frac{M_{\star}}{\tau_{\rm th}^{\star}} = 2.0 \times 10^{18} \, {\rm g \ s^{-1}} \, \left(\frac{M_{\star}}{{\rm M}_{\odot}}\right)^{3.5}$$

from an $\sim 8 M_{\odot}$ B star companion

- Variability time scales (8 min 15 hr) are similar to the thermal and secular time scales in the "inner" region
- Prediction: P098 should show outflow between 2000 – 3000 km s⁻¹

Introduction to SuperMassive Super-Eddington Sources:

> NLSy1s, BAL Quasars, ULIRGs, and HyLIRGs

SuperMassive Super-Eddington Sources: An Introduction

Any source that hovers near its Eddington luminosity (or more) is a SE candidate

SPL and Super-Soft sources

WISE-selected HyLIRGs (60% Type 2 opt spectra) (Eisenhardt et al.; Jingwen et al 2012)

Conclusions

- 1. ULXs are good candidates for stellar-mass and IMBH super-Eddington sources:
 - ULXs having <u>significant emission above 2 kev</u>: moderately ($1 < \dot{m} < 10$) SE SPL sources, esp. if $\Gamma > 2.4$
 - <u>Super-soft</u> ULXs with little emission above 2 kev: highly SE accreting objects (m >> 10)
- 2. WISE-selected W12dropouts are good candidates for extreme SMBH super-Eddington sources:
 - Have Type 2 optical/UV spectrum \rightarrow large dusty torus
 - Dark at 3 & 5 μ m, bright at 12 & 22 μ m \rightarrow torus very opt thick
- 3. Others (NLSy1s, BAL QSOs, etc.) possible but not discussed
- 4. Some high covering factor BAL QSOs also may exist