

BAMBERG, GERMANY, 18-22 JUNE 2012

AGN from low to high accretion rates

Francesca Panessa

In the local Universe

Luminous AGN : ~ 1% of all galaxies

Low Luminosity AGN : $\sim 40\%$ of all galaxies

Dormant BH: 60% of all galaxies

Ho (2008) – "Nuclear Activity in Nearby Galaxies"

Luminous AGNs generally show "universal" SED

How does this picture change at low accretion rates?

Lack of the 'big blue bump' feature

the creation of the BLR is connected with disk instabilities occurring in proximity of a transition radius at which the accretion disk changes from gas-pressure dominated to radiation-pressure dominated

Since this transition radius becomes smaller than the innermost stable orbit for very low accretion rates (and therefore luminosities) \rightarrow <u>very weak AGN should lack the BLR</u>

Certified "True" Type 2 Seyfert galaxies: no BLR?

Simultaneous observations: it's not an artefact of variability!

How does this picture change at low accretion rates?

Radio Loud vs Radio Quiet AGN

^{R*}_{5 GHz} ~ 10 [W Hz⁻¹] $\log L_{4400 \text{ Å}} [\text{W Hz}^{-1}]$

Padovani_1993

 $R = L(5 GHz) / L(B) \longrightarrow Log R = 1$ RADIO LOUDNESS

Radio Loud vs Radio Quiet

Radio Loud RL:

- ✓ Large scale radio lobes
- ✓ Compact luminous cores often with apparent luminal motions

Lol	De I			
Hot Spot	Counter Jet	Core	Jet	Hot Spot
	Parts of a	DRAGN	N (Cygnus A)	

Radio Quiet RQ:

- ✓ Faint radio sources
- ✓ Emission confined to sub-kpc scale

Accretion-ejection at low luminosities

→ Below a critical accretion rate disks become radiatively inefficient e.g., advection dominated: ADAFs, CDAFs, RIAFs

-> At lower accretion rates disks become less and less prominent, jets remain strong

-> Radio Loud - Radio Quiet dichotomy caused by a switch of accretion mode - RQ appear only at high accretion rates

At low luminosity no dichotomy is expected (Nagar et al. 2002)

(A/C)DAF + Jet

Radio Loudness versus accretion rate

The formation of a jet in LLAGN is related to the accretion rate as in XRBs?

Cannot observe state transitions as in XRBs \rightarrow AGN statistics

X-ray/radio emission vs accretion

jet domination – disk L_{x,r} domination Disk Jet How do X-ray and radio luminosities change depending on the accretion rate (and low-state high-state Luminosity)? (A/C)DAF + Jet Μ Μ M crit edd

Analogy with black hole X-ray binaries

Körding, Falcke, & Markoff (2002); see also Fender, Gallo, & Jonker (2003)

Hannikainen et al. (1998), Corbel et al. (2003), Gallo, Fender & Pooley (2003)

Scaling Relations: L_{2-10 keV} vs. L_{Radio}

(Laor & Behar 2008)

Fundamental plane for BH activity

Merloni et al. 2004, Falcke et al. 2004

→ X-ray marginally consistent with optically thin synchrotron emission from a jet
 → Radiatively inefficient accretion flows

Scaling Relations: L_{2-10 keV} vs. L_{Radio}

Origin of radio emission in Radio Quiet

Possible physical mechanisms in Radio-Quiet:

✓ Synchrotron emission from a jet:

✓ Relativistic? Sub-relativistic? Weak jet? Outflow?

✓ Free-free emission from a molecular torus or corona?

✓ ADAF? CDAF? RIAF? ...

The LLAGN complete sample

 Optically selected sample of 28 nearby Seyfert galaxies (Cappi et al. 2006, D < 27 Mpc)

-> 2-10 keV X-ray data (Cappi et al. 2006)
-> NVSS (Panessa&Giroletti in prep)
-> VLA 6,20 cm (Ho&Ulvestad 2000)
-> VLBI 6,20 cm (Giroletti&Panessa 2009+ literature)

VLA Survey of Seyfert nuclei

(Ho&Ulvestad 2000):

- 6 and 20 cm survey
- 0.12 mJy/beam 1"
- Linear scales 10-100 pc
- 64% detected at 20 cm
- 82% detected at 6 cm
- Compact unresolved cores + extended linear structures
- Spectral slopes from steep to flat/inverted

VLBI Observations of a distance limited Complete Sample of Seyferts

Complete sample of 28 Seyfert nearby galaxies

 \checkmark For the first time sources with S < 1 mJy (VLA cores)

 European VLBI Network new observations to complete the sample at mas scales of 23/28 nuclei

NVSS \rightarrow up to tens of kpc VLA \rightarrow tens of pc up to kpc scales VLBI < 0.1 pc

29.810 29.805 129.800 29.795 Grey scale flux range= -134.8 234.9 MicroJV/BEAM Cont peak flux = 2.3486E-04.4/Y/BEAM Levs = 1.300E-04⁴ (-1, 1, 2, 4, 8, 16, 32) 29.790

190 MHZ NGC4501 ICL

59.155 59.150 59.145 59.140 59.13

•

•

0

VLBI Survey of Seyfert nuclei

- 6 and 20 cm survey
- 90 microJy/beam
- Linear scales 0.05 pc @10 Mpc

PLot file version 2 created 19-JAN-2011 17:31:41 BOTH: NGC3227 IPOL 4990.490 MHZ NGC3227-E5LR ICLN 1

42 08.300 08.298 08.296 08.294 08.292 08.290 08.288 RIGHT ASCENSION (J2000) Grey scale flux range=-226 9255.3 MicroJV/BEAM Cont peak flux = 2.5527F-04 JV/BEAM Levs = 1.410F-04 - (1, 1)

400

14 25 13.40

13.35

13.30

13.25

13.20

13.15

13 10

13.0

13.00

12.95

12 31 59.170

Giroletti&Panessa 2009, Bontempi et al. submitted, Panessa&Giroletti 2012 in prep

VLBI Morphology

- Single compact
- ✓ Double at one freq.
- ✓ Double at both freq.
- Jet like structure
- Non detection (8/23)

Figure 3. NGC 4138 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1, 1, 2, 4, ...) \times$ the $\sim 3\sigma$ noise level, which is 0.14 and 0.09 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBW are shown in the lower left corner, and their size is 8.5 mas \times 17.7 mas in P.A. 14^o and 2.4 mas \times 3.7 mas in P.A. 8^o at 1.7 and 5 GHz, respectively.

Figure 1. Images of NGC 3227 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1, 1, 2, 4, ...) \times$ the $\sim 3\sigma$ noise level, which is 0.13 and 0.08 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBWs are shown in the lower left corner, and their size is 2.9 mas \times 17.3 mas in P.A. -44° and 7.2 mas \times 13.5 mas in P.A. 50° at 1.7 and 5 GHz, respectively.

Figure 2. NGC 3982 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1, 1, 2, 4, ...) \times$ the $\sim 3\sigma$ noise level, which is 0.20 and 0.09 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBW are shown in the lower left corner, and their size is 6.4 mas \times 11.4 mas in P.A. 4° and 5.7 mas \times 6.8 mas in P.A. 85° at 1.7 and 5 GHz, respectively.

Are radio cores ubiquitous?

At 20 cm (1.4 GHz):

- NVSS : 26/28 (93%)
- VLA : 18/28 (64%)
- VLBI : 12/21 (57%)

At 6 cm (5 GHz):

- VLA : 23/28 (82%)
- VLBI : 15/23 (65%)

Lower detection rate with respect to VLA Radio Quiet nuclei are less ubiquitous at VLBI spatial scale resolution

Brightness Temperatures and Spectral Slopes

 Peak at relatively low brightness temperature:

thermal vs non-thermal

 Radio spectral slope equally distributed between steep, flat and inverted:

 no correlation between the slope and the optical spectral class type1 vs type2

The Narrow Line Seyfert 1 NGC 4051

✓ At 1.6 GHz 3 sub-mJy components:

- Two associated with the VLA small scale double structure
- ✓ Third is symmetric to the easternmost one
- ✓ Steep spectral index (α = 0.7)
- ✓ $T_B = 10^5$ K linear size < 0.31 pc (compared to the BLR size 0.006 pc)
- ✓ Log L_{5 GHz}/L _{2-10 keV} < -5.8
- \checkmark Log L_X/L _{EDD} =-3.4
- ✓ H_2O Maser coincident with core

VLA A. 1.4 GHz VLA D. 1.4 GHz VLA A, 8.4 GHz 53.5 53.0 12 03 10.5 44 31 52.95 0 52.90 J2000 EVN, 1.6 GHz 52.85 52.80 700 Velocity (km/a) 09.61 09.60 09.59 09.58 09.57 **RIGHT ASCENSION (J2000)**

Jet base? thermal emission from an outflow/molecular disk/nuclear wind

Type 2 Seyfert: NGC 4388

- ✓ Type 1.9 Seyfert galaxy
- ✓ Several VLA detections up to 15 GHz, flat spectrum (Falcke et al. 1998)
- ✓ Detected at 1.6 GHz (not at 5 GHz) -> very steep α > 1.3
- ✓ Compact radio emission at 1.3 mJy
- ✓ Extension of 6 mas (0.48 pc)
- \checkmark T_B = 1.3 x 10⁶ K
- ✓ H_2O Maser emission

No ADAF (steep α , 10⁶ R_S) --> Free-free emission from the torus?

Type 1 Seyfert: NGC 5273

- ✓ Sy 1.5 VLA detection (S= 0.6 mJy, Nagar+99) at 8 GHz, an unresolved flat component
- ✓ EVN non detection!!!
 (3 σ peak < 90 microJy at 1.6 GHz)
 - 95 % of the VLA flux resolved at 20-300 mas scale
 - significant variability
- ✓ Log $L_{5 GHz}/L_{2-10 keV} < -6$
- \checkmark Log L_X/L _{EDD} =-3.2

Resolved radio emission or variable radio source?

X-ray versus Radio correlation

No significant correlation at VLBI sub-pc scales

X-ray radio loudness

 $R_{x} = L(5 \text{ GHz}) / L(2-10 \text{ keV})$

At higher angular resolution sources are more RQ

Resolved radio emission

Hard X-ray selected INTEGRAL AGN Complete sample

Hard X-ray selected sample of luminous AGN:

-> INTEGRAL 20-100 keV (Malizia et al 2009)
-> 2-10 keV X-ray data (Malizia et al. + literature)
-> NVSS radio data (Maiorano et al. in prep)

INTEGRAL AGN Complete sample

Correlation between 2-10 keV, 20-100 keV vs 20 cm NVSS

The X-ray versus NVSS correlation

-> INTEGRAL sample-> Optical sample

✓ Correlation changes slope at low luminosities

Conclusions

The standard picture of AGN evolves with the accretion rate:

- Evidence of sources with no/weak BLR at low Eddington ratios
- Evidence of dependence of R with the accretion rate

BUT

- At high angular resolution --> 5-100% of emission is resolved

 → the sub-pc cores are extremely RADIO QUIET
- The X-ray vs radio correlation holds at pc-kpc scales

 → extended emission connected to the BH activity

Thank you!