

Median stacking of serendipitous radio observations of SDSS AGN Pieter van Oers

Supervisors: Ian McHardy & Phil Uttley

University of Southampton

Southampton

University of Amsterdam

Co-Supervisors: Sera Markoff Jörn Wilms Iniversität Erlangen-Nuremberg

M87 Credit: STScI/AURA and NASA/ESA

Cen A Credit: ESO

Microquasars & AGN

- Black Holes are found in systems varying hugely in mass, from microquasars (<u>µQ</u>) to Active Galactic Nuclei (<u>AGN</u>)
- Exact physical properties vary hugely, but parameters usually show simple scaling with mass
- Why are some sources radio-loud and others not?

Problems and Biases selecting an AGN sample

- Samples selected for observation
- Black hole mass
- Host galaxy
- Environmental

Possible Solution: Do we see a clear effect at the transition accretion rate if we have a clean sample?

Optical: SDSS DR7

comprises spectroscopy of nearly 10⁶ galaxies, 10⁵ QSO mainly located in northern hemisphere

SDSS sample selection

- Galaxies: selection based mainly on extended emission, r band magnitudes
 - \checkmark **r**_{PSF} **r**_{cmodel} >= 0.24
 - \checkmark Petrosian magnitude limit $\mathbf{r}_{P} = 17.77$
 - Surface brightness cuts
- QSOs: complex selection algorithm based on colours to distinguish these point sources from stars

Finding the AGN: BPT diagram

 Baldwin, Phillips & Terlevich (1981) devise first empirical classification scheme, using optical line flux ratios, to remove starforming regions that also ionise those lines

Main line ratios:
 [OIII]/H_β vs [NII]/H_α

Creating our AGN sample

- For galactic AGN use only high-quality DR7 SDSS spectra (S/N in main lines > 3), AGN mass from M- σ relation; Tremaine+ 2002.
- For QSOs use lines and masses available from Shen
 +2008 and update to DR7 on website.

Selection Criteria

	AGN	QSO			
Starting number	86214	94999			
Mass (Msol)	7.0 <log[bh mass]<9.5<="" th=""></log[bh>				
s/n ([OIII], Hβ)	> 3				
Ηα/Ηβ	>3 sigma , < 10 , > 2.86 - 2 sigma				
Z	>0.04	0.04 <z<0.8**< th=""></z<0.8**<>			
resulting number	48796	3603			

** : S/N constraint on [OIII] limits QSO redshift range

Exploring the transition accretion rate

9.0<Log[BH Mass]<9.5

Estimate accretion rates from [OIII] 5007 flux (Netzer 2009) for AGN and Lbol (estimated by Shen+ 2008) for QSOs

Serendipitous observations: SDSS DR7 and VLA

- Match optical sources to radio
- Use only higher frequency VLA to focus in on core emission (X band, 8 GHz) to examine possible state transitions
- $>10^{5}$ VLA observations in >30 yr

Result: mask inner 10% of FOV (radius 0.85' ~ 50'')

Matching SDSS DR7 with VLA, results

	serendipitous		non-serendipitous		Total	
	optical AGN	X band obs	optical AGN	X band obs	optical AGN	X band obs
galactic AGN	614	1716	397	843	977	2558
QSO	51	105	157	961	202	1065
Total	665	1821	554	1804	1179	3623

(34 gal AGN and 6 QSOs are serendipitous in some obs while not in others)

Median vs Mean Stacking

- sub-detection limit radio fluxes expected, so need stacking method (per mass bin) => statistical study
- median preferred: less sensitive to outliers

Median vs Mean 7<Log[M]<9Msol

377 images

377 images

Median images: total sample and low-mass comparison 7 < Log[M] < 7.5 Msol126 images

377 images

Serendipitous vs non-...

377 images

291 images

Non - Serendipitous

low vs high accretion

102 images

2 images

Median Radio-loudness

Median Radio-loudness

Median Radio-loudness

Summary

- Method allows detection detection of sources below limit
- Significant differences between serendipitous and nonserendipitous sources: No evidence for mass-dependence of radio loudness
- Interesting results, although even bigger dataset would give much better results
- Ideally use high frequency complete survey. High frequency with large FOV: SKA?

Future work

- Use similar procedure to obtain average AGN
 X-ray luminosity
- Use results to build average AGN SED templates. Compare with XRB SEDs.